224 lines
6.1 KiB
PHP
224 lines
6.1 KiB
PHP
<?php
|
|
/**
|
|
* PHPExcel
|
|
*
|
|
* Copyright (c) 2006 - 2014 PHPExcel
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
*
|
|
* @category PHPExcel
|
|
* @package PHPExcel_Shared_Trend
|
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
|
* @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL
|
|
* @version ##VERSION##, ##DATE##
|
|
*/
|
|
|
|
|
|
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/trend/bestFitClass.php';
|
|
require_once PHPEXCEL_ROOT . 'PHPExcel/Shared/JAMA/Matrix.php';
|
|
|
|
|
|
/**
|
|
* PHPExcel_Polynomial_Best_Fit
|
|
*
|
|
* @category PHPExcel
|
|
* @package PHPExcel_Shared_Trend
|
|
* @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel)
|
|
*/
|
|
class PHPExcel_Polynomial_Best_Fit extends PHPExcel_Best_Fit
|
|
{
|
|
/**
|
|
* Algorithm type to use for best-fit
|
|
* (Name of this trend class)
|
|
*
|
|
* @var string
|
|
**/
|
|
protected $_bestFitType = 'polynomial';
|
|
|
|
/**
|
|
* Polynomial order
|
|
*
|
|
* @protected
|
|
* @var int
|
|
**/
|
|
protected $_order = 0;
|
|
|
|
|
|
/**
|
|
* Return the order of this polynomial
|
|
*
|
|
* @return int
|
|
**/
|
|
public function getOrder() {
|
|
return $this->_order;
|
|
} // function getOrder()
|
|
|
|
|
|
/**
|
|
* Return the Y-Value for a specified value of X
|
|
*
|
|
* @param float $xValue X-Value
|
|
* @return float Y-Value
|
|
**/
|
|
public function getValueOfYForX($xValue) {
|
|
$retVal = $this->getIntersect();
|
|
$slope = $this->getSlope();
|
|
foreach($slope as $key => $value) {
|
|
if ($value != 0.0) {
|
|
$retVal += $value * pow($xValue, $key + 1);
|
|
}
|
|
}
|
|
return $retVal;
|
|
} // function getValueOfYForX()
|
|
|
|
|
|
/**
|
|
* Return the X-Value for a specified value of Y
|
|
*
|
|
* @param float $yValue Y-Value
|
|
* @return float X-Value
|
|
**/
|
|
public function getValueOfXForY($yValue) {
|
|
return ($yValue - $this->getIntersect()) / $this->getSlope();
|
|
} // function getValueOfXForY()
|
|
|
|
|
|
/**
|
|
* Return the Equation of the best-fit line
|
|
*
|
|
* @param int $dp Number of places of decimal precision to display
|
|
* @return string
|
|
**/
|
|
public function getEquation($dp=0) {
|
|
$slope = $this->getSlope($dp);
|
|
$intersect = $this->getIntersect($dp);
|
|
|
|
$equation = 'Y = '.$intersect;
|
|
foreach($slope as $key => $value) {
|
|
if ($value != 0.0) {
|
|
$equation .= ' + '.$value.' * X';
|
|
if ($key > 0) {
|
|
$equation .= '^'.($key + 1);
|
|
}
|
|
}
|
|
}
|
|
return $equation;
|
|
} // function getEquation()
|
|
|
|
|
|
/**
|
|
* Return the Slope of the line
|
|
*
|
|
* @param int $dp Number of places of decimal precision to display
|
|
* @return string
|
|
**/
|
|
public function getSlope($dp=0) {
|
|
if ($dp != 0) {
|
|
$coefficients = array();
|
|
foreach($this->_slope as $coefficient) {
|
|
$coefficients[] = round($coefficient,$dp);
|
|
}
|
|
return $coefficients;
|
|
}
|
|
return $this->_slope;
|
|
} // function getSlope()
|
|
|
|
|
|
public function getCoefficients($dp=0) {
|
|
return array_merge(array($this->getIntersect($dp)),$this->getSlope($dp));
|
|
} // function getCoefficients()
|
|
|
|
|
|
/**
|
|
* Execute the regression and calculate the goodness of fit for a set of X and Y data values
|
|
*
|
|
* @param int $order Order of Polynomial for this regression
|
|
* @param float[] $yValues The set of Y-values for this regression
|
|
* @param float[] $xValues The set of X-values for this regression
|
|
* @param boolean $const
|
|
*/
|
|
private function _polynomial_regression($order, $yValues, $xValues, $const) {
|
|
// calculate sums
|
|
$x_sum = array_sum($xValues);
|
|
$y_sum = array_sum($yValues);
|
|
$xx_sum = $xy_sum = 0;
|
|
for($i = 0; $i < $this->_valueCount; ++$i) {
|
|
$xy_sum += $xValues[$i] * $yValues[$i];
|
|
$xx_sum += $xValues[$i] * $xValues[$i];
|
|
$yy_sum += $yValues[$i] * $yValues[$i];
|
|
}
|
|
/*
|
|
* This routine uses logic from the PHP port of polyfit version 0.1
|
|
* written by Michael Bommarito and Paul Meagher
|
|
*
|
|
* The function fits a polynomial function of order $order through
|
|
* a series of x-y data points using least squares.
|
|
*
|
|
*/
|
|
for ($i = 0; $i < $this->_valueCount; ++$i) {
|
|
for ($j = 0; $j <= $order; ++$j) {
|
|
$A[$i][$j] = pow($xValues[$i], $j);
|
|
}
|
|
}
|
|
for ($i=0; $i < $this->_valueCount; ++$i) {
|
|
$B[$i] = array($yValues[$i]);
|
|
}
|
|
$matrixA = new Matrix($A);
|
|
$matrixB = new Matrix($B);
|
|
$C = $matrixA->solve($matrixB);
|
|
|
|
$coefficients = array();
|
|
for($i = 0; $i < $C->m; ++$i) {
|
|
$r = $C->get($i, 0);
|
|
if (abs($r) <= pow(10, -9)) {
|
|
$r = 0;
|
|
}
|
|
$coefficients[] = $r;
|
|
}
|
|
|
|
$this->_intersect = array_shift($coefficients);
|
|
$this->_slope = $coefficients;
|
|
|
|
$this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum);
|
|
foreach($this->_xValues as $xKey => $xValue) {
|
|
$this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue);
|
|
}
|
|
} // function _polynomial_regression()
|
|
|
|
|
|
/**
|
|
* Define the regression and calculate the goodness of fit for a set of X and Y data values
|
|
*
|
|
* @param int $order Order of Polynomial for this regression
|
|
* @param float[] $yValues The set of Y-values for this regression
|
|
* @param float[] $xValues The set of X-values for this regression
|
|
* @param boolean $const
|
|
*/
|
|
function __construct($order, $yValues, $xValues=array(), $const=True) {
|
|
if (parent::__construct($yValues, $xValues) !== False) {
|
|
if ($order < $this->_valueCount) {
|
|
$this->_bestFitType .= '_'.$order;
|
|
$this->_order = $order;
|
|
$this->_polynomial_regression($order, $yValues, $xValues, $const);
|
|
if (($this->getGoodnessOfFit() < 0.0) || ($this->getGoodnessOfFit() > 1.0)) {
|
|
$this->_error = True;
|
|
}
|
|
} else {
|
|
$this->_error = True;
|
|
}
|
|
}
|
|
} // function __construct()
|
|
|
|
} // class polynomialBestFit
|