1
0
mirror of https://github.com/Llewellynvdm/conky.git synced 2024-11-18 02:55:12 +00:00
conky/src/freebsd.c

889 lines
18 KiB
C
Raw Normal View History

/*
* freebsd.c
* Contains FreeBSD specific stuff
*
* $Id$
*/
#include <sys/dkstat.h>
#include <sys/param.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/vmmeter.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include <net/if.h>
#include <net/if_mib.h>
#include <net/if_media.h>
#include <net/if_var.h>
#include <netinet/in.h>
#include <devstat.h>
#include <fcntl.h>
#include <ifaddrs.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <dev/wi/if_wavelan_ieee.h>
#include "conky.h"
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof (var))
#define KELVTOC(x) ((x - 2732) / 10.0)
#define MAXSHOWDEVS 16
#if 0
#define FREEBSD_DEBUG
#endif
inline void proc_find_top(struct process **cpu, struct process **mem);
u_int64_t diskio_prev = 0;
static short cpu_setup = 0;
static short diskio_setup = 0;
static int getsysctl(char *name, void *ptr, size_t len)
{
size_t nlen = len;
if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
return (-1);
}
if (nlen != len) {
return (-1);
}
return (0);
}
struct ifmibdata *data = NULL;
size_t len = 0;
static int swapmode(int *retavail, int *retfree)
{
int n;
int pagesize = getpagesize();
struct kvm_swap swapary[1];
*retavail = 0;
*retfree = 0;
#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
n = kvm_getswapinfo(kd, swapary, 1, 0);
if (n < 0 || swapary[0].ksw_total == 0)
return (0);
*retavail = CONVERT(swapary[0].ksw_total);
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
n = (int) ((double) swapary[0].ksw_used * 100.0 /
(double) swapary[0].ksw_total);
return (n);
}
void
prepare_update()
{
}
void
update_uptime()
{
int mib[2] = { CTL_KERN, KERN_BOOTTIME };
struct timeval boottime;
time_t now;
size_t size = sizeof (boottime);
if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1) &&
(boottime.tv_sec != 0)) {
time(&now);
info.uptime = now - boottime.tv_sec;
} else {
fprintf(stderr, "Could not get uptime\n");
info.uptime = 0;
}
}
void
update_meminfo()
{
int total_pages, inactive_pages, free_pages;
int swap_avail, swap_free;
int pagesize = getpagesize();
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages))
fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_page_count\"");
if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages))
fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_free_count\"");
if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages))
fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_inactive_count\"");
info.memmax = (total_pages * pagesize) >> 10;
info.mem =
((total_pages - free_pages - inactive_pages) * pagesize) >> 10;
if ((swapmode(&swap_avail, &swap_free)) >= 0) {
info.swapmax = swap_avail;
info.swap = (swap_avail - swap_free);
} else {
info.swapmax = 0;
info.swap = 0;
}
}
void
update_net_stats()
{
struct net_stat *ns;
double delta;
long long r, t, last_recv, last_trans;
struct ifaddrs *ifap, *ifa;
struct if_data *ifd;
/* get delta */
delta = current_update_time - last_update_time;
if (delta <= 0.0001)
return;
if (getifaddrs(&ifap) < 0)
return;
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *) ifa->ifa_name);
if (ifa->ifa_flags & IFF_UP) {
struct ifaddrs *iftmp;
ns->up = 1;
ns->linkstatus = 1;
last_recv = ns->recv;
last_trans = ns->trans;
if (ifa->ifa_addr->sa_family != AF_LINK)
continue;
for (iftmp = ifa->ifa_next; iftmp != NULL &&
strcmp(ifa->ifa_name, iftmp->ifa_name) == 0;
iftmp = iftmp->ifa_next)
if (iftmp->ifa_addr->sa_family == AF_INET)
memcpy(&(ns->addr), iftmp->ifa_addr,
iftmp->ifa_addr->sa_len);
ifd = (struct if_data *) ifa->ifa_data;
r = ifd->ifi_ibytes;
t = ifd->ifi_obytes;
if (r < ns->last_read_recv)
ns->recv +=
((long long) 4294967295U -
ns->last_read_recv) + r;
else
ns->recv += (r - ns->last_read_recv);
ns->last_read_recv = r;
if (t < ns->last_read_trans)
ns->trans +=
((long long) 4294967295U -
ns->last_read_trans) + t;
else
ns->trans += (t - ns->last_read_trans);
ns->last_read_trans = t;
/* calculate speeds */
ns->recv_speed = (ns->recv - last_recv) / delta;
ns->trans_speed = (ns->trans - last_trans) / delta;
} else {
ns->up = 0;
ns->linkstatus = 0;
}
}
freeifaddrs(ifap);
}
void
update_total_processes()
{
int n_processes;
kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
info.procs = n_processes;
}
void
update_running_processes()
{
struct kinfo_proc *p;
int n_processes;
int i, cnt = 0;
p = kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
for (i = 0; i < n_processes; i++) {
#if __FreeBSD__ < 5
if (p[i].kp_proc.p_stat == SRUN)
#else
if (p[i].ki_stat == SRUN)
#endif
cnt++;
}
info.run_procs = cnt;
}
struct cpu_load_struct {
unsigned long load[5];
};
struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} };
long cpu_used, oldtotal, oldused;
void
get_cpu_count()
{
/* int cpu_count = 0; */
/*
* XXX
* FreeBSD doesn't allow to get per CPU load stats
* on SMP machines. It's possible to get a CPU count,
* but as we fulfil only info.cpu_usage[0], it's better
* to report there's only one CPU. It should fix some bugs
* (e.g. cpugraph)
*/
#if 0
if (GETSYSCTL("hw.ncpu", cpu_count) == 0)
info.cpu_count = cpu_count;
#endif
info.cpu_count = 1;
info.cpu_usage = malloc(info.cpu_count * sizeof (float));
if (info.cpu_usage == NULL)
CRIT_ERR("malloc");
}
/* XXX: SMP support */
void
update_cpu_usage()
{
long used, total;
long cp_time[CPUSTATES];
size_t len = sizeof (cp_time);
/* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */
if ((cpu_setup == 0) || (!info.cpu_usage)) {
get_cpu_count();
cpu_setup = 1;
}
if (sysctlbyname("kern.cp_time", &cp_time, &len, NULL, 0) < 0) {
(void) fprintf(stderr, "Cannot get kern.cp_time");
}
fresh.load[0] = cp_time[CP_USER];
fresh.load[1] = cp_time[CP_NICE];
fresh.load[2] = cp_time[CP_SYS];
fresh.load[3] = cp_time[CP_IDLE];
fresh.load[4] = cp_time[CP_IDLE];
used = fresh.load[0] + fresh.load[1] + fresh.load[2];
total =
fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3];
if ((total - oldtotal) != 0) {
info.cpu_usage[0] = ((double) (used - oldused)) /
(double) (total - oldtotal);
} else {
info.cpu_usage[0] = 0;
}
oldused = used;
oldtotal = total;
}
double
get_i2c_info(int *fd, int arg, char *devtype, char *type)
{
return (0);
}
void
update_load_average()
{
double v[3];
getloadavg(v, 3);
info.loadavg[0] = (float) v[0];
info.loadavg[1] = (float) v[1];
info.loadavg[2] = (float) v[2];
}
double
get_acpi_temperature(int fd)
{
int temp;
if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) {
fprintf(stderr,
"Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n");
return (0.0);
}
return (KELVTOC(temp));
}
void
get_battery_stuff(char *buf, unsigned int n, const char *bat)
{
int battime, batcapacity, batstate, ac;
if (GETSYSCTL("hw.acpi.battery.time", battime))
(void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.battery.time\"\n");
if (GETSYSCTL("hw.acpi.battery.life", batcapacity))
(void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.battery.life\"\n");
if (GETSYSCTL("hw.acpi.battery.state", batstate))
(void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.battery.state\"\n");
if (GETSYSCTL("hw.acpi.acline", ac))
(void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.acline\"\n");
if (batstate == 1) {
if (battime != -1)
snprintf(buf, n, "remaining %d%% (%d:%2.2d)",
batcapacity, battime / 60, battime % 60);
else
/* no time estimate available yet */
snprintf(buf, n, "remaining %d%%",
batcapacity);
if (ac == 1)
(void) fprintf(stderr, "Discharging while on AC!\n");
} else {
snprintf(buf, n, batstate == 2 ? "charging (%d%%)" : "charged (%d%%)", batcapacity);
if (batstate != 2 && batstate != 0)
(void) fprintf(stderr, "Unknow battery state %d!\n", batstate);
if (ac == 0)
(void) fprintf(stderr, "Charging while not on AC!\n");
}
}
int
open_i2c_sensor(const char *dev, const char *type, int n, int *div,
char *devtype)
{
return (0);
}
int
open_acpi_temperature(const char *name)
{
return (0);
}
void
get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size)
{
int state;
if (!p_client_buffer || client_buffer_size <= 0)
return;
if (GETSYSCTL("hw.acpi.acline", state)) {
fprintf(stderr,
"Cannot read sysctl \"hw.acpi.acline\"\n");
return;
}
if (state)
strncpy(p_client_buffer, "Running on AC Power",
client_buffer_size);
else
strncpy(p_client_buffer, "Running on battery",
client_buffer_size);
}
void
get_acpi_fan(char *p_client_buffer, size_t client_buffer_size)
{
if (!p_client_buffer || client_buffer_size <= 0)
return;
/* not implemented */
memset(p_client_buffer, 0, client_buffer_size);
}
void
get_adt746x_cpu(char *p_client_buffer, size_t client_buffer_size)
{
if (!p_client_buffer || client_buffer_size <= 0)
return;
/* not implemented */
memset(p_client_buffer, 0, client_buffer_size);
}
void
get_adt746x_fan(char *p_client_buffer, size_t client_buffer_size)
{
if (!p_client_buffer || client_buffer_size <= 0)
return;
/* not implemented */
memset(p_client_buffer, 0, client_buffer_size);
}
/* rdtsc() and get_freq_dynamic() copied from linux.c */
#if defined(__i386) || defined(__x86_64)
__inline__ unsigned long long int
rdtsc()
{
unsigned long long int x;
__asm__ volatile(".byte 0x0f, 0x31":"=A" (x));
return (x);
}
#endif
/* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
void
get_freq_dynamic(char *p_client_buffer, size_t client_buffer_size,
char *p_format, int divisor)
{
#if defined(__i386) || defined(__x86_64)
struct timezone tz;
struct timeval tvstart, tvstop;
unsigned long long cycles[2]; /* gotta be 64 bit */
unsigned int microseconds; /* total time taken */
memset(&tz, 0, sizeof (tz));
/* get this function in cached memory */
gettimeofday(&tvstart, &tz);
cycles[0] = rdtsc();
gettimeofday(&tvstart, &tz);
/* we don't trust that this is any specific length of time */
usleep(100);
cycles[1] = rdtsc();
gettimeofday(&tvstop, &tz);
microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) +
(tvstop.tv_usec - tvstart.tv_usec);
snprintf(p_client_buffer, client_buffer_size, p_format,
(float)((cycles[1] - cycles[0]) / microseconds) / divisor);
#else
get_freq(p_client_buffer, client_buffer_size, p_format, divisor);
#endif
}
/*void*/
char
get_freq(char *p_client_buffer, size_t client_buffer_size,
char *p_format, int divisor, unsigned int cpu)
{
int freq;
char *freq_sysctl;
freq_sysctl = (char *)calloc(16, sizeof(char));
if (freq_sysctl == NULL)
exit(-1);
snprintf(freq_sysctl, 16, "dev.cpu.%d.freq", cpu);
if (!p_client_buffer || client_buffer_size <= 0 ||
!p_format || divisor <= 0)
return 0;
if (GETSYSCTL(freq_sysctl, freq) == 0)
snprintf(p_client_buffer, client_buffer_size,
p_format, (float)freq/divisor);
else
snprintf(p_client_buffer, client_buffer_size, p_format, 0.0f);
free(freq_sysctl);
return 1;
}
void
update_top()
{
proc_find_top(info.cpu, info.memu);
}
void
update_wifi_stats()
{
struct ifreq ifr; /* interface stats */
struct wi_req wireq;
struct net_stat * ns;
struct ifaddrs *ifap, *ifa;
struct ifmediareq ifmr;
int s;
/*
* Get iface table
*/
if (getifaddrs(&ifap) < 0)
return;
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *) ifa->ifa_name);
s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
/* Get media type */
bzero(&ifmr, sizeof(ifmr));
strlcpy(ifmr.ifm_name, ifa->ifa_name, IFNAMSIZ);
if (ioctl(s, SIOCGIFMEDIA, (caddr_t) &ifmr) < 0)
goto cleanup;
/*
* We can monitor only wireless interfaces
* which not in hostap mode
*/
if ((ifmr.ifm_active & IFM_IEEE80211) &&
!(ifmr.ifm_active & IFM_IEEE80211_HOSTAP)) {
/* Get wi status */
bzero(&ifr, sizeof(ifr));
strlcpy(ifr.ifr_name, ifa->ifa_name, IFNAMSIZ);
wireq.wi_type = WI_RID_COMMS_QUALITY;
wireq.wi_len = WI_MAX_DATALEN;
ifr.ifr_data = (void *) &wireq;
if (ioctl(s, SIOCGWAVELAN, (caddr_t) &ifr) < 0) {
perror("ioctl (getting wi status)");
exit(1);
}
/*
* wi_val[0] = quality
* wi_val[1] = signal
* wi_val[2] = noise
*/
ns->linkstatus = (int) wireq.wi_val[1];
}
cleanup:
close(s);
}
}
void
update_diskio()
{
int devs_count,
num_selected,
num_selections;
struct device_selection *dev_select = NULL;
long select_generation;
int dn;
static struct statinfo statinfo_cur;
u_int64_t diskio_current = 0;
bzero(&statinfo_cur, sizeof (statinfo_cur));
statinfo_cur.dinfo = (struct devinfo *)malloc(sizeof (struct devinfo));
bzero(statinfo_cur.dinfo, sizeof (struct devinfo));
if (devstat_getdevs(NULL, &statinfo_cur) < 0)
return;
devs_count = statinfo_cur.dinfo->numdevs;
if (devstat_selectdevs(&dev_select, &num_selected, &num_selections,
&select_generation, statinfo_cur.dinfo->generation,
statinfo_cur.dinfo->devices, devs_count, NULL, 0,
NULL, 0, DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) {
for (dn = 0; dn < devs_count; ++dn) {
int di;
struct devstat *dev;
di = dev_select[dn].position;
dev = &statinfo_cur.dinfo->devices[di];
diskio_current += dev->bytes[DEVSTAT_READ] +
dev->bytes[DEVSTAT_WRITE];
}
free(dev_select);
}
/*
* Since we return (diskio_total_current - diskio_total_old), first
* frame will be way too high (it will be equal to
* diskio_total_current, i.e. all disk I/O since boot). That's why
* it is better to return 0 first time;
*/
if (diskio_setup == 0) {
diskio_setup = 1;
diskio_value = 0;
} else
diskio_value = (unsigned int)((diskio_current - diskio_prev)/
1024);
diskio_prev = diskio_current;
free(statinfo_cur.dinfo);
}
/*
* While topless is obviously better, top is also not bad.
*/
int
comparecpu(const void *a, const void *b)
{
if (((struct process *)a)->amount > ((struct process *)b)->amount)
return (-1);
if (((struct process *)a)->amount < ((struct process *)b)->amount)
return (1);
return (0);
}
int
comparemem(const void *a, const void *b)
{
if (((struct process *)a)->totalmem > ((struct process *)b)->totalmem)
return (-1);
if (((struct process *)a)->totalmem < ((struct process *)b)->totalmem)
return (1);
return (0);
}
inline void
proc_find_top(struct process **cpu, struct process **mem)
{
struct kinfo_proc *p;
int n_processes;
int i, j = 0;
struct process *processes;
int total_pages;
/* we get total pages count again to be sure it is up to date */
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages) != 0)
CRIT_ERR("Cannot read sysctl"
"\"vm.stats.vm.v_page_count\"");
p = kvm_getprocs(kd, KERN_PROC_PROC, 0, &n_processes);
processes = malloc(n_processes * sizeof (struct process));
for (i = 0; i < n_processes; i++) {
if (!((p[i].ki_flag & P_SYSTEM)) &&
p[i].ki_comm != NULL) {
processes[j].pid = p[i].ki_pid;
processes[j].name = strdup(p[i].ki_comm);
processes[j].amount = 100.0 *
p[i].ki_pctcpu / FSCALE;
processes[j].totalmem = (float)(p[i].ki_rssize /
(float)total_pages) * 100.0;
j++;
}
}
qsort(processes, j - 1, sizeof (struct process), comparemem);
for (i = 0; i < 10; i++) {
struct process *tmp, *ttmp;
tmp = malloc(sizeof (struct process));
tmp->pid = processes[i].pid;
tmp->amount = processes[i].amount;
tmp->totalmem = processes[i].totalmem;
tmp->name = strdup(processes[i].name);
ttmp = mem[i];
mem[i] = tmp;
if (ttmp != NULL) {
free(ttmp->name);
free(ttmp);
}
}
qsort(processes, j - 1, sizeof (struct process), comparecpu);
for (i = 0; i < 10; i++) {
struct process *tmp, *ttmp;
tmp = malloc(sizeof (struct process));
tmp->pid = processes[i].pid;
tmp->amount = processes[i].amount;
tmp->totalmem = processes[i].totalmem;
tmp->name = strdup(processes[i].name);
ttmp = cpu[i];
cpu[i] = tmp;
if (ttmp != NULL) {
free(ttmp->name);
free(ttmp);
}
}
#if defined(FREEBSD_DEBUG)
printf("=====\nmem\n");
for (i = 0; i < 10; i++) {
printf("%d: %s(%d) %.2f\n", i, mem[i]->name,
mem[i]->pid, mem[i]->totalmem);
}
#endif
for (i = 0; i < j; free(processes[i++].name));
free(processes);
}
#if defined(i386) || defined(__i386__)
#define APMDEV "/dev/apm"
#define APM_UNKNOWN 255
int
apm_getinfo(int fd, apm_info_t aip)
{
if (ioctl(fd, APMIO_GETINFO, aip) == -1)
return (-1);
return (0);
}
char
*get_apm_adapter()
{
int fd;
struct apm_info info;
fd = open(APMDEV, O_RDONLY);
if (fd < 0)
return ("ERR");
if (apm_getinfo(fd, &info) != 0) {
close(fd);
return ("ERR");
}
close(fd);
switch (info.ai_acline) {
case 0:
return ("off-line");
break;
case 1:
if (info.ai_batt_stat == 3)
return ("charging");
else
return ("on-line");
break;
default:
return ("unknown");
break;
}
}
char
*get_apm_battery_life()
{
int fd;
u_int batt_life;
struct apm_info info;
char *out;
out = (char *)calloc(16, sizeof (char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return (out);
}
if (apm_getinfo(fd, &info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return (out);
}
close(fd);
batt_life = info.ai_batt_life;
if (batt_life == APM_UNKNOWN)
strncpy(out, "unknown", 16);
else if (batt_life <= 100) {
snprintf(out, 16, "%d%%", batt_life);
return (out);
} else
strncpy(out, "ERR", 16);
return (out);
}
char
*get_apm_battery_time()
{
int fd;
int batt_time;
int h, m, s;
struct apm_info info;
char *out;
out = (char *)calloc(16, sizeof (char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return (out);
}
if (apm_getinfo(fd, &info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return (out);
}
close(fd);
batt_time = info.ai_batt_time;
if (batt_time == -1)
strncpy(out, "unknown", 16);
else {
h = batt_time;
s = h % 60;
h /= 60;
m = h % 60;
h /= 60;
snprintf(out, 16, "%2d:%02d:%02d", h, m, s);
}
return (out);
}
#endif
void update_entropy (void)
{
/* mirrorbox: can you do anything equivalent in freebsd? -drphibes. */
}
/* empty stub so conky links */
void
free_all_processes(void)
{
}