1
0
mirror of https://github.com/Llewellynvdm/conky.git synced 2024-11-18 02:55:12 +00:00
conky/src/freebsd.c

744 lines
16 KiB
C
Raw Normal View History

/** freebsd.c
* Contains FreeBSD specific stuff
*
* $Id$
*/
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <kvm.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/dkstat.h>
#include <unistd.h>
#include <sys/user.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_mib.h>
#include <sys/socket.h>
#include <ifaddrs.h>
#include <devstat.h>
#include "conky.h"
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
#define KELVTOC(x) ((x - 2732) / 10.0)
#define MAXSHOWDEVS 16
inline void proc_find_top(struct process **cpu, struct process **mem);
u_int64_t diskio_prev = 0;
static short cpu_setup = 0;
static short diskio_setup = 0;
static int getsysctl(char *name, void *ptr, size_t len)
{
size_t nlen = len;
if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
return -1;
}
if (nlen != len) {
return -1;
}
return 0;
}
static kvm_t *kd = NULL;
struct ifmibdata *data = NULL;
size_t len = 0;
static int swapmode(int *retavail, int *retfree)
{
int n;
int pagesize = getpagesize();
struct kvm_swap swapary[1];
static int kd_init = 1;
if (kd_init) {
kd_init = 0;
if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
(void) fprintf(stderr, "Cannot read kvm.");
return -1;
}
}
if (kd == NULL) {
return -1;
}
*retavail = 0;
*retfree = 0;
#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
n = kvm_getswapinfo(kd, swapary, 1, 0);
if (n < 0 || swapary[0].ksw_total == 0)
return (0);
*retavail = CONVERT(swapary[0].ksw_total);
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
n = (int) ((double) swapary[0].ksw_used * 100.0 /
(double) swapary[0].ksw_total);
return n;
}
void prepare_update()
{
}
void update_uptime()
{
int mib[2] = { CTL_KERN, KERN_BOOTTIME };
struct timeval boottime;
time_t now;
size_t size = sizeof(boottime);
if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1)
&& (boottime.tv_sec != 0)) {
time(&now);
info.uptime = now - boottime.tv_sec;
} else {
(void) fprintf(stderr, "Could not get uptime\n");
info.uptime = 0;
}
}
void update_meminfo()
{
int total_pages, inactive_pages, free_pages;
int swap_avail, swap_free;
int pagesize = getpagesize();
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages))
(void) fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_page_count\"");
if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages))
(void) fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_free_count\"");
if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages))
(void) fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_inactive_count\"");
info.memmax = (total_pages * pagesize) >> 10;
info.mem =
((total_pages - free_pages - inactive_pages) * pagesize) >> 10;
if ((swapmode(&swap_avail, &swap_free)) >= 0) {
info.swapmax = swap_avail;
info.swap = (swap_avail - swap_free);
} else {
info.swapmax = 0;
info.swap = 0;
}
}
void update_net_stats()
{
struct net_stat *ns;
double delta;
long long r, t, last_recv, last_trans;
struct ifaddrs *ifap, *ifa;
struct if_data *ifd;
/* get delta */
delta = current_update_time - last_update_time;
if (delta <= 0.0001)
return;
if (getifaddrs(&ifap) < 0)
return;
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *) ifa->ifa_name);
if (ifa->ifa_flags & IFF_UP) {
last_recv = ns->recv;
last_trans = ns->trans;
if (ifa->ifa_addr->sa_family != AF_LINK)
continue;
ifd = (struct if_data *) ifa->ifa_data;
r = ifd->ifi_ibytes;
t = ifd->ifi_obytes;
if (r < ns->last_read_recv)
ns->recv +=
((long long) 4294967295U -
ns->last_read_recv) + r;
else
ns->recv += (r - ns->last_read_recv);
ns->last_read_recv = r;
if (t < ns->last_read_trans)
ns->trans +=
((long long) 4294967295U -
ns->last_read_trans) + t;
else
ns->trans += (t - ns->last_read_trans);
ns->last_read_trans = t;
/* calculate speeds */
ns->recv_speed = (ns->recv - last_recv) / delta;
ns->trans_speed = (ns->trans - last_trans) / delta;
}
}
freeifaddrs(ifap);
}
void update_total_processes()
{
int n_processes;
static int kd_init = 1;
if (kd_init) {
kd_init = 0;
if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
(void) fprintf(stderr, "Cannot read kvm.");
return;
}
}
if (kd != NULL)
kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
else
return;
info.procs = n_processes;
}
void update_running_processes()
{
static int kd_init = 1;
struct kinfo_proc *p;
int n_processes;
int i, cnt = 0;
if (kd_init) {
kd_init = 0;
if ((kd =
kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
(void) fprintf(stderr, "Cannot read kvm.");
}
}
if (kd != NULL) {
p = kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
for (i = 0; i < n_processes; i++) {
#if __FreeBSD__ < 5
if (p[i].kp_proc.p_stat == SRUN)
#else
if (p[i].ki_stat == SRUN)
#endif
cnt++;
}
} else
return;
info.run_procs = cnt;
}
struct cpu_load_struct {
unsigned long load[5];
};
struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} };
long cpu_used, oldtotal, oldused;
void get_cpu_count()
{
int cpu_count = 0;
if (GETSYSCTL("hw.ncpu", cpu_count) == 0)
info.cpu_count = cpu_count;
info.cpu_usage = malloc(info.cpu_count * sizeof(float));
if (info.cpu_usage == NULL)
CRIT_ERR("malloc");
}
/* XXX: SMP support */
void update_cpu_usage()
{
long used, total;
long cp_time[CPUSTATES];
size_t len = sizeof(cp_time);
if (cpu_setup == 0) {
get_cpu_count();
cpu_setup = 1;
}
if (sysctlbyname("kern.cp_time", &cp_time, &len, NULL, 0) < 0) {
(void) fprintf(stderr, "Cannot get kern.cp_time");
}
fresh.load[0] = cp_time[CP_USER];
fresh.load[1] = cp_time[CP_NICE];
fresh.load[2] = cp_time[CP_SYS];
fresh.load[3] = cp_time[CP_IDLE];
fresh.load[4] = cp_time[CP_IDLE];
used = fresh.load[0] + fresh.load[1] + fresh.load[2];
total =
fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3];
if ((total - oldtotal) != 0) {
info.cpu_usage[0] = ((double) (used - oldused)) / (double) (total - oldtotal);
} else {
info.cpu_usage[0] = 0;
}
oldused = used;
oldtotal = total;
}
double get_i2c_info(int *fd, int arg, char *devtype, char *type)
{
return 0;
}
void update_load_average()
{
double v[3];
getloadavg(v, 3);
info.loadavg[0] = (float) v[0];
info.loadavg[1] = (float) v[1];
info.loadavg[2] = (float) v[2];
}
double get_acpi_temperature(int fd)
{
int temp;
if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) {
(void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n");
return 0.0;
}
return KELVTOC(temp);
}
void get_battery_stuff(char *buf, unsigned int n, const char *bat)
{
int battime;
if (GETSYSCTL("hw.acpi.battery.time", battime))
(void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.battery.time\"\n");
if (battime != -1)
snprintf(buf, n, "Discharging, remaining %d:%2.2d",
battime / 60, battime % 60);
else
snprintf(buf, n, "Battery is charging");
}
int
open_i2c_sensor(const char *dev, const char *type, int n, int *div,
char *devtype)
{
return 0;
}
int open_acpi_temperature(const char *name)
{
return 0;
}
void get_acpi_ac_adapter( char * p_client_buffer, size_t client_buffer_size )
{
int state;
if ( !p_client_buffer || client_buffer_size <= 0 )
return;
if (GETSYSCTL("hw.acpi.acline", state)) {
(void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.acline\"\n");
return;
}
if (state)
strncpy( p_client_buffer, "Running on AC Power", client_buffer_size );
else
strncpy( p_client_buffer, "Running on battery", client_buffer_size );
return;
}
void get_acpi_fan( char * p_client_buffer, size_t client_buffer_size )
{
if ( !p_client_buffer !! client_buffer_size <= 0 )
return;
/* not implemented */
memset(p_client_buffer,0,client_buffer_size);
return;
}
void get_adt746x_cpu( char * p_client_buffer, size_t client_buffer_size )
{
if ( !p_client_buffer || client_buffer_size <= 0 )
return;
/* not implemented */
memset(p_client_buffer,0,client_buffer_size);
return;
}
void get_adt746x_fan( char * p_client_buffer, size_t client_buffer_size )
{
if ( !p_client_buffer || client_buffer_size <= 0 )
return;
/* not implemented */
memset(p_client_buffer,0,client_buffer_size);
return;
}
/* rdtsc() and get_freq_dynamic() copied from linux.c */
#if defined(__i386) || defined(__x86_64)
__inline__ unsigned long long int rdtsc()
{
unsigned long long int x;
__asm__ volatile (".byte 0x0f, 0x31":"=A" (x));
return x;
}
#endif
/* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
void get_freq_dynamic( char * p_client_buffer, size_t client_buffer_size, char * p_format, int divisor )
{
#if defined(__i386) || defined(__x86_64)
struct timezone tz;
struct timeval tvstart, tvstop;
unsigned long long cycles[2]; /* gotta be 64 bit */
unsigned int microseconds; /* total time taken */
memset(&tz, 0, sizeof(tz));
/* get this function in cached memory */
gettimeofday(&tvstart, &tz);
cycles[0] = rdtsc();
gettimeofday(&tvstart, &tz);
/* we don't trust that this is any specific length of time */
usleep(100);
cycles[1] = rdtsc();
gettimeofday(&tvstop, &tz);
microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) +
(tvstop.tv_usec - tvstart.tv_usec);
snprintf( p_client_buffer, client_buffer_size, p_format, (float)((cycles[1] - cycles[0]) / microseconds) / divisor );
return;
#else
get_freq( p_client_buffer, client_buffer_size, p_format, divisor );
return;
#endif
}
/* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
void get_freq( char * p_client_buffer, size_t client_buffer_size, char * p_format, int divisor )
{
int freq;
if ( !p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0 )
return;
if (GETSYSCTL("dev.cpu.0.freq", freq) == 0)
{
snprintf( p_client_buffer, client_buffer_size, p_format, freq/divisor );
}
else
{
snprintf( p_client_buffer, client_buffer_size, p_format, (float)0 );
}
return;
}
void update_top()
{
proc_find_top(info.cpu, info.memu);
}
void update_wifi_stats()
{
/* XXX */
}
void update_diskio()
{
int devs_count,
num_selected,
num_selections;
struct device_selection *dev_select = NULL;
long select_generation;
int dn;
static struct statinfo statinfo_cur;
u_int64_t diskio_current = 0;
bzero(&statinfo_cur, sizeof(statinfo_cur));
statinfo_cur.dinfo = (struct devinfo *)malloc(sizeof(struct devinfo));
bzero(statinfo_cur.dinfo, sizeof(struct devinfo));
if (devstat_getdevs(NULL, &statinfo_cur) < 0)
return;
devs_count = statinfo_cur.dinfo->numdevs;
if (devstat_selectdevs(&dev_select, &num_selected, &num_selections,
&select_generation, statinfo_cur.dinfo->generation,
statinfo_cur.dinfo->devices, devs_count, NULL, 0,
NULL, 0, DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) {
for (dn = 0; dn < devs_count; ++dn) {
int di;
struct devstat *dev;
di = dev_select[dn].position;
dev = &statinfo_cur.dinfo->devices[di];
diskio_current += dev->bytes[DEVSTAT_READ] + dev->bytes[DEVSTAT_WRITE];
}
free(dev_select);
}
/*
* Since we return (diskio_total_current - diskio_total_old), first
* frame will be way too high (it will be equal to diskio_total_current, i.e.
* all disk I/O since boot). That's why it is better to return 0 first time;
*/
if (diskio_setup == 0) {
diskio_setup = 1;
diskio_value = 0;
} else
diskio_value = (unsigned int)((diskio_current - diskio_prev)/1024);
diskio_prev = diskio_current;
free(statinfo_cur.dinfo);
}
/*
* While topless is obviously better, top is also not bad.
*/
int comparecpu(const void * a, const void * b)
{
if (((struct process *)a)->amount > ((struct process *)b)->amount)
return -1;
if (((struct process *)a)->amount < ((struct process *)b)->amount)
return 1;
return 0;
}
int comparemem(const void * a, const void * b)
{
if (((struct process *)a)->totalmem > ((struct process *)b)->totalmem)
return -1;
if (((struct process *)a)->totalmem < ((struct process *)b)->totalmem)
return 1;
return 0;
}
inline void proc_find_top(struct process **cpu, struct process **mem)
{
static int kd_init = 1;
struct kinfo_proc *p;
int n_processes;
int i, j = 0;
struct process *processes;
if (kd_init) {
kd_init = 0;
if ((kd =
kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
(void) fprintf(stderr, "Cannot read kvm.");
}
}
if (kd != NULL) {
int total_pages;
/* we get total pages count again to be sure it is up to date */
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages) != 0)
CRIT_ERR("Cannot read sysctl \"vm.stats.vm.v_page_count\"");
p = kvm_getprocs(kd, KERN_PROC_PROC, 0, &n_processes);
processes = malloc(n_processes * sizeof(struct process));
for (i = 0; i < n_processes; i++) {
if (!((p[i].ki_flag & P_SYSTEM)) && p[i].ki_comm != NULL) {
processes[j].pid = p[i].ki_pid;
processes[j].name = strdup(p[i].ki_comm);
processes[j].amount = 100.0 * p[i].ki_pctcpu / FSCALE;
processes[j].totalmem = (float)(p[i].ki_rssize / (float)total_pages) * 100.0;
j++;
}
}
qsort(processes, j, sizeof(struct process), comparemem);
for (i = 0; i < 10; mem[i] = &processes[i], i++);
qsort(processes, j, sizeof(struct process), comparecpu);
for (i = 0; i < 10; cpu[i] = &processes[i], i++);
free(processes);
} else
return;
}
#if defined(i386) || defined(__i386__)
#define APMDEV "/dev/apm"
#define APM_UNKNOWN 255
int apm_getinfo(int fd, apm_info_t aip)
{
if (ioctl(fd, APMIO_GETINFO, aip) == -1)
return -1;
return 0;
}
char *get_apm_adapter()
{
int fd;
struct apm_info info;
fd = open(APMDEV, O_RDONLY);
if(fd < 0)
return "ERR";
if(apm_getinfo(fd, &info) != 0 ) {
close(fd);
return "ERR";
}
close(fd);
switch(info.ai_acline) {
case 0:
return "off-line";
break;
case 1:
if(info.ai_batt_stat == 3)
return "charging";
else
return "on-line";
break;
default:
return "unknown";
break;
}
}
char *get_apm_battery_life()
{
int fd;
u_int batt_life;
struct apm_info info;
char *out;
out = (char *)calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if(fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if(apm_getinfo(fd, &info) != 0 ) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_life = info.ai_batt_life;
if (batt_life == APM_UNKNOWN)
strncpy(out, "unknown", 16);
else if (batt_life <= 100) {
snprintf(out, 20,"%d%%", batt_life);
return out;
}
else
strncpy(out, "ERR", 16);
return out;
}
char *get_apm_battery_time()
{
int fd;
int batt_time;
int h, m, s;
struct apm_info info;
char *out;
out = (char *)calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if(fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if(apm_getinfo(fd, &info) != 0 ) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_time = info.ai_batt_time;
if (batt_time == -1)
strncpy(out, "unknown", 16);
else {
h = batt_time;
s = h % 60;
h /= 60;
m = h % 60;
h /= 60;
snprintf(out, 16, "%2d:%02d:%02d", h, m, s);
}
return out;
}
#endif