1
0
mirror of https://github.com/Llewellynvdm/conky.git synced 2025-01-27 17:18:33 +00:00

Make cstyle.pl(1) happy.

git-svn-id: https://conky.svn.sourceforge.net/svnroot/conky/trunk/conky1@601 7f574dfc-610e-0410-a909-a81674777703
This commit is contained in:
Roman Bogorodskiy 2006-03-20 11:44:29 +00:00
parent c2fb9f583a
commit 1fb0efb5f1

View File

@ -30,12 +30,12 @@
#include "conky.h" #include "conky.h"
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof (var))
#define KELVTOC(x) ((x - 2732) / 10.0) #define KELVTOC(x) ((x - 2732) / 10.0)
#define MAXSHOWDEVS 16 #define MAXSHOWDEVS 16
#if 0 #if 0
#define FREEBSD_DEBUG #define FREEBSD_DEBUG
#endif #endif
inline void proc_find_top(struct process **cpu, struct process **mem); inline void proc_find_top(struct process **cpu, struct process **mem);
@ -48,14 +48,14 @@ static int getsysctl(char *name, void *ptr, size_t len)
{ {
size_t nlen = len; size_t nlen = len;
if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
return -1; return (-1);
} }
if (nlen != len) { if (nlen != len) {
return -1; return (-1);
} }
return 0; return (0);
} }
static kvm_t *kd = NULL; static kvm_t *kd = NULL;
@ -72,20 +72,20 @@ static int swapmode(int *retavail, int *retfree)
if (kd_init) { if (kd_init) {
kd_init = 0; kd_init = 0;
if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) { O_RDONLY, "kvm_open")) == NULL) {
(void) fprintf(stderr, "Cannot read kvm."); (void) fprintf(stderr, "Cannot read kvm.");
return -1; return (-1);
} }
} }
if (kd == NULL) { if (kd == NULL) {
return -1; return (-1);
} }
*retavail = 0; *retavail = 0;
*retfree = 0; *retfree = 0;
#define CONVERT(v) ((quad_t)(v) * pagesize / 1024) #define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
n = kvm_getswapinfo(kd, swapary, 1, 0); n = kvm_getswapinfo(kd, swapary, 1, 0);
if (n < 0 || swapary[0].ksw_total == 0) if (n < 0 || swapary[0].ksw_total == 0)
@ -95,33 +95,36 @@ static int swapmode(int *retavail, int *retfree)
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
n = (int) ((double) swapary[0].ksw_used * 100.0 / n = (int) ((double) swapary[0].ksw_used * 100.0 /
(double) swapary[0].ksw_total); (double) swapary[0].ksw_total);
return n; return (n);
} }
void prepare_update() void
prepare_update()
{ {
} }
void update_uptime() void
update_uptime()
{ {
int mib[2] = { CTL_KERN, KERN_BOOTTIME }; int mib[2] = { CTL_KERN, KERN_BOOTTIME };
struct timeval boottime; struct timeval boottime;
time_t now; time_t now;
size_t size = sizeof(boottime); size_t size = sizeof (boottime);
if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1) if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1)
&& (boottime.tv_sec != 0)) { && (boottime.tv_sec != 0)) {
time(&now); time(&now);
info.uptime = now - boottime.tv_sec; info.uptime = now - boottime.tv_sec;
} else { } else {
(void)fprintf(stderr, "Could not get uptime\n"); fprintf(stderr, "Could not get uptime\n");
info.uptime = 0; info.uptime = 0;
} }
} }
void update_meminfo() void
update_meminfo()
{ {
int total_pages, inactive_pages, free_pages; int total_pages, inactive_pages, free_pages;
int swap_avail, swap_free; int swap_avail, swap_free;
@ -129,16 +132,16 @@ void update_meminfo()
int pagesize = getpagesize(); int pagesize = getpagesize();
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages)) if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages))
(void)fprintf(stderr, fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_page_count\""); "Cannot read sysctl \"vm.stats.vm.v_page_count\"");
if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages)) if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages))
(void)fprintf(stderr, fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_free_count\""); "Cannot read sysctl \"vm.stats.vm.v_free_count\"");
if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages)) if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages))
(void)fprintf(stderr, fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_inactive_count\""); "Cannot read sysctl \"vm.stats.vm.v_inactive_count\"");
info.memmax = (total_pages * pagesize) >> 10; info.memmax = (total_pages * pagesize) >> 10;
info.mem = info.mem =
@ -154,7 +157,8 @@ void update_meminfo()
} }
} }
void update_net_stats() void
update_net_stats()
{ {
struct net_stat *ns; struct net_stat *ns;
double delta; double delta;
@ -188,7 +192,7 @@ void update_net_stats()
if (r < ns->last_read_recv) if (r < ns->last_read_recv)
ns->recv += ns->recv +=
((long long) 4294967295U - ((long long) 4294967295U -
ns->last_read_recv) + r; ns->last_read_recv) + r;
else else
ns->recv += (r - ns->last_read_recv); ns->recv += (r - ns->last_read_recv);
@ -197,7 +201,7 @@ void update_net_stats()
if (t < ns->last_read_trans) if (t < ns->last_read_trans)
ns->trans += ns->trans +=
((long long) 4294967295U - ((long long) 4294967295U -
ns->last_read_trans) + t; ns->last_read_trans) + t;
else else
ns->trans += (t - ns->last_read_trans); ns->trans += (t - ns->last_read_trans);
@ -213,7 +217,8 @@ void update_net_stats()
freeifaddrs(ifap); freeifaddrs(ifap);
} }
void update_total_processes() void
update_total_processes()
{ {
int n_processes; int n_processes;
static int kd_init = 1; static int kd_init = 1;
@ -221,8 +226,8 @@ void update_total_processes()
if (kd_init) { if (kd_init) {
kd_init = 0; kd_init = 0;
if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) { O_RDONLY, "kvm_open")) == NULL) {
(void)fprintf(stderr, "Cannot read kvm."); fprintf(stderr, "Cannot read kvm.");
return; return;
} }
} }
@ -236,7 +241,8 @@ void update_total_processes()
info.procs = n_processes; info.procs = n_processes;
} }
void update_running_processes() void
update_running_processes()
{ {
static int kd_init = 1; static int kd_init = 1;
struct kinfo_proc *p; struct kinfo_proc *p;
@ -245,9 +251,8 @@ void update_running_processes()
if (kd_init) { if (kd_init) {
kd_init = 0; kd_init = 0;
if ((kd = if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL) {
O_RDONLY, "kvm_open")) == NULL) {
(void) fprintf(stderr, "Cannot read kvm."); (void) fprintf(stderr, "Cannot read kvm.");
} }
} }
@ -275,11 +280,13 @@ struct cpu_load_struct {
struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} }; struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} };
long cpu_used, oldtotal, oldused; long cpu_used, oldtotal, oldused;
void get_cpu_count() void
get_cpu_count()
{ {
/* int cpu_count = 0; */ /* int cpu_count = 0; */
/* XXX /*
* XXX
* FreeBSD doesn't allow to get per CPU load stats * FreeBSD doesn't allow to get per CPU load stats
* on SMP machines. It's possible to get a CPU count, * on SMP machines. It's possible to get a CPU count,
* but as we fulfil only info.cpu_usage[0], it's better * but as we fulfil only info.cpu_usage[0], it's better
@ -291,24 +298,25 @@ void get_cpu_count()
info.cpu_count = cpu_count; info.cpu_count = cpu_count;
#endif #endif
info.cpu_count = 1; info.cpu_count = 1;
info.cpu_usage = malloc(info.cpu_count * sizeof(float)); info.cpu_usage = malloc(info.cpu_count * sizeof (float));
if (info.cpu_usage == NULL) if (info.cpu_usage == NULL)
CRIT_ERR("malloc"); CRIT_ERR("malloc");
} }
/* XXX: SMP support */ /* XXX: SMP support */
void update_cpu_usage() void
update_cpu_usage()
{ {
long used, total; long used, total;
long cp_time[CPUSTATES]; long cp_time[CPUSTATES];
size_t len = sizeof(cp_time); size_t len = sizeof (cp_time);
if (cpu_setup == 0) { if (cpu_setup == 0) {
get_cpu_count(); get_cpu_count();
cpu_setup = 1; cpu_setup = 1;
} }
if (sysctlbyname("kern.cp_time", &cp_time, &len, NULL, 0) < 0) { if (sysctlbyname("kern.cp_time", &cp_time, &len, NULL, 0) < 0) {
(void) fprintf(stderr, "Cannot get kern.cp_time"); (void) fprintf(stderr, "Cannot get kern.cp_time");
} }
@ -324,7 +332,8 @@ void update_cpu_usage()
fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3]; fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3];
if ((total - oldtotal) != 0) { if ((total - oldtotal) != 0) {
info.cpu_usage[0] = ((double) (used - oldused)) / (double) (total - oldtotal); info.cpu_usage[0] = ((double) (used - oldused)) /
(double) (total - oldtotal);
} else { } else {
info.cpu_usage[0] = 0; info.cpu_usage[0] = 0;
} }
@ -333,12 +342,14 @@ void update_cpu_usage()
oldtotal = total; oldtotal = total;
} }
double get_i2c_info(int *fd, int arg, char *devtype, char *type) double
get_i2c_info(int *fd, int arg, char *devtype, char *type)
{ {
return 0; return (0);
} }
void update_load_average() void
update_load_average()
{ {
double v[3]; double v[3];
getloadavg(v, 3); getloadavg(v, 3);
@ -348,30 +359,32 @@ void update_load_average()
info.loadavg[2] = (float) v[2]; info.loadavg[2] = (float) v[2];
} }
double get_acpi_temperature(int fd) double
get_acpi_temperature(int fd)
{ {
int temp; int temp;
if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) { if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) {
(void)fprintf(stderr, fprintf(stderr,
"Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n"); "Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n");
return 0.0; return (0.0);
} }
return KELVTOC(temp); return (KELVTOC(temp));
} }
void get_battery_stuff(char *buf, unsigned int n, const char *bat) void
get_battery_stuff(char *buf, unsigned int n, const char *bat)
{ {
int battime; int battime;
if (GETSYSCTL("hw.acpi.battery.time", battime)) if (GETSYSCTL("hw.acpi.battery.time", battime))
(void) fprintf(stderr, (void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.battery.time\"\n"); "Cannot read sysctl \"hw.acpi.battery.time\"\n");
if (battime != -1) if (battime != -1)
snprintf(buf, n, "Discharging, remaining %d:%2.2d", snprintf(buf, n, "Discharging, remaining %d:%2.2d",
battime / 60, battime % 60); battime / 60, battime % 60);
else else
snprintf(buf, n, "Battery is charging"); snprintf(buf, n, "Battery is charging");
} }
@ -380,15 +393,17 @@ int
open_i2c_sensor(const char *dev, const char *type, int n, int *div, open_i2c_sensor(const char *dev, const char *type, int n, int *div,
char *devtype) char *devtype)
{ {
return 0; return (0);
} }
int open_acpi_temperature(const char *name) int
open_acpi_temperature(const char *name)
{ {
return 0; return (0);
} }
void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size) void
get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size)
{ {
int state; int state;
@ -396,171 +411,174 @@ void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size)
return; return;
if (GETSYSCTL("hw.acpi.acline", state)) { if (GETSYSCTL("hw.acpi.acline", state)) {
(void)fprintf(stderr, fprintf(stderr,
"Cannot read sysctl \"hw.acpi.acline\"\n"); "Cannot read sysctl \"hw.acpi.acline\"\n");
return; return;
} }
if (state) if (state)
strncpy(p_client_buffer, "Running on AC Power", client_buffer_size); strncpy(p_client_buffer, "Running on AC Power",
client_buffer_size);
else else
strncpy(p_client_buffer, "Running on battery", client_buffer_size); strncpy(p_client_buffer, "Running on battery",
client_buffer_size);
return;
} }
void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) void
get_acpi_fan(char *p_client_buffer, size_t client_buffer_size)
{ {
if (!p_client_buffer || client_buffer_size <= 0) if (!p_client_buffer || client_buffer_size <= 0)
return; return;
/* not implemented */ /* not implemented */
memset(p_client_buffer, 0, client_buffer_size); memset(p_client_buffer, 0, client_buffer_size);
return;
} }
void get_adt746x_cpu(char *p_client_buffer, size_t client_buffer_size) void
get_adt746x_cpu(char *p_client_buffer, size_t client_buffer_size)
{ {
if (!p_client_buffer || client_buffer_size <= 0) if (!p_client_buffer || client_buffer_size <= 0)
return; return;
/* not implemented */ /* not implemented */
memset(p_client_buffer, 0, client_buffer_size); memset(p_client_buffer, 0, client_buffer_size);
return;
} }
void get_adt746x_fan(char *p_client_buffer, size_t client_buffer_size) void
get_adt746x_fan(char *p_client_buffer, size_t client_buffer_size)
{ {
if (!p_client_buffer || client_buffer_size <= 0) if (!p_client_buffer || client_buffer_size <= 0)
return; return;
/* not implemented */ /* not implemented */
memset(p_client_buffer,0,client_buffer_size); memset(p_client_buffer, 0, client_buffer_size);
return;
} }
/* rdtsc() and get_freq_dynamic() copied from linux.c */ /* rdtsc() and get_freq_dynamic() copied from linux.c */
#if defined(__i386) || defined(__x86_64) #if defined(__i386) || defined(__x86_64)
__inline__ unsigned long long int rdtsc() __inline__ unsigned long long int
rdtsc()
{ {
unsigned long long int x; unsigned long long int x;
__asm__ volatile (".byte 0x0f, 0x31":"=A" (x)); __asm__ volatile(".byte 0x0f, 0x31":"=A" (x));
return x; return (x);
} }
#endif #endif
/* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
void get_freq_dynamic(char * p_client_buffer, size_t client_buffer_size, char * p_format, int divisor) void
get_freq_dynamic(char *p_client_buffer, size_t client_buffer_size,
char *p_format, int divisor)
{ {
#if defined(__i386) || defined(__x86_64) #if defined(__i386) || defined(__x86_64)
struct timezone tz; struct timezone tz;
struct timeval tvstart, tvstop; struct timeval tvstart, tvstop;
unsigned long long cycles[2]; /* gotta be 64 bit */ unsigned long long cycles[2]; /* gotta be 64 bit */
unsigned int microseconds; /* total time taken */ unsigned int microseconds; /* total time taken */
memset(&tz, 0, sizeof(tz)); memset(&tz, 0, sizeof (tz));
/* get this function in cached memory */ /* get this function in cached memory */
gettimeofday(&tvstart, &tz); gettimeofday(&tvstart, &tz);
cycles[0] = rdtsc(); cycles[0] = rdtsc();
gettimeofday(&tvstart, &tz); gettimeofday(&tvstart, &tz);
/* we don't trust that this is any specific length of time */ /* we don't trust that this is any specific length of time */
usleep(100); usleep(100);
cycles[1] = rdtsc(); cycles[1] = rdtsc();
gettimeofday(&tvstop, &tz); gettimeofday(&tvstop, &tz);
microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) + microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) +
(tvstop.tv_usec - tvstart.tv_usec); (tvstop.tv_usec - tvstart.tv_usec);
snprintf(p_client_buffer, client_buffer_size, p_format, snprintf(p_client_buffer, client_buffer_size, p_format,
(float)((cycles[1] - cycles[0]) / microseconds) / divisor); (float)((cycles[1] - cycles[0]) / microseconds) / divisor);
return;
#else #else
get_freq(p_client_buffer, client_buffer_size, p_format, divisor); get_freq(p_client_buffer, client_buffer_size, p_format, divisor);
return;
#endif #endif
} }
/* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
void get_freq(char *p_client_buffer, size_t client_buffer_size, char *p_format, int divisor) void
get_freq(char *p_client_buffer, size_t client_buffer_size,
char *p_format, int divisor)
{ {
int freq; int freq;
if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) if (!p_client_buffer || client_buffer_size <= 0
return; || !p_format || divisor <= 0)
return;
if (GETSYSCTL("dev.cpu.0.freq", freq) == 0)
{
snprintf(p_client_buffer, client_buffer_size, p_format, freq/divisor);
}
else
{
snprintf(p_client_buffer, client_buffer_size, p_format, (float)0);
}
return; if (GETSYSCTL("dev.cpu.0.freq", freq) == 0)
snprintf(p_client_buffer, client_buffer_size,
p_format, freq/divisor);
else
snprintf(p_client_buffer, client_buffer_size, p_format, 0f);
} }
void update_top() void
update_top()
{ {
proc_find_top(info.cpu, info.memu); proc_find_top(info.cpu, info.memu);
} }
void update_wifi_stats() void
update_wifi_stats()
{ {
/* XXX */ /* XXX */
} }
void update_diskio() void
update_diskio()
{ {
int devs_count, int devs_count,
num_selected, num_selected,
num_selections; num_selections;
struct device_selection *dev_select = NULL; struct device_selection *dev_select = NULL;
long select_generation; long select_generation;
int dn; int dn;
static struct statinfo statinfo_cur; static struct statinfo statinfo_cur;
u_int64_t diskio_current = 0; u_int64_t diskio_current = 0;
bzero(&statinfo_cur, sizeof(statinfo_cur)); bzero(&statinfo_cur, sizeof (statinfo_cur));
statinfo_cur.dinfo = (struct devinfo *)malloc(sizeof(struct devinfo)); statinfo_cur.dinfo = (struct devinfo *)malloc(sizeof (struct devinfo));
bzero(statinfo_cur.dinfo, sizeof(struct devinfo)); bzero(statinfo_cur.dinfo, sizeof (struct devinfo));
if (devstat_getdevs(NULL, &statinfo_cur) < 0) if (devstat_getdevs(NULL, &statinfo_cur) < 0)
return; return;
devs_count = statinfo_cur.dinfo->numdevs; devs_count = statinfo_cur.dinfo->numdevs;
if (devstat_selectdevs(&dev_select, &num_selected, &num_selections, if (devstat_selectdevs(&dev_select, &num_selected, &num_selections,
&select_generation, statinfo_cur.dinfo->generation, &select_generation, statinfo_cur.dinfo->generation,
statinfo_cur.dinfo->devices, devs_count, NULL, 0, statinfo_cur.dinfo->devices, devs_count, NULL, 0,
NULL, 0, DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) { NULL, 0, DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) {
for (dn = 0; dn < devs_count; ++dn) { for (dn = 0; dn < devs_count; ++dn) {
int di; int di;
struct devstat *dev; struct devstat *dev;
di = dev_select[dn].position; di = dev_select[dn].position;
dev = &statinfo_cur.dinfo->devices[di]; dev = &statinfo_cur.dinfo->devices[di];
diskio_current += dev->bytes[DEVSTAT_READ] + dev->bytes[DEVSTAT_WRITE]; diskio_CUrrent += dev->bytes[DEVSTAT_READ] +
dev->bytes[DEVSTAT_WRITE];
} }
free(dev_select); free(dev_select);
} }
/* /*
* Since we return (diskio_total_current - diskio_total_old), first * Since we return (diskio_total_current - diskio_total_old), first
* frame will be way too high (it will be equal to diskio_total_current, i.e. * frame will be way too high (it will be equal to
* all disk I/O since boot). That's why it is better to return 0 first time; * diskio_total_current, i.e. all disk I/O since boot). That's why
* it is better to return 0 first time;
*/ */
if (diskio_setup == 0) { if (diskio_setup == 0) {
diskio_setup = 1; diskio_setup = 1;
diskio_value = 0; diskio_value = 0;
} else } else
diskio_value = (unsigned int)((diskio_current - diskio_prev)/1024); diskio_value = (unsigned int)((diskio_current - diskio_prev)/
1024);
diskio_prev = diskio_current; diskio_prev = diskio_current;
free(statinfo_cur.dinfo); free(statinfo_cur.dinfo);
@ -570,29 +588,32 @@ void update_diskio()
* While topless is obviously better, top is also not bad. * While topless is obviously better, top is also not bad.
*/ */
int comparecpu(const void *a, const void *b) int
comparecpu(const void *a, const void *b)
{ {
if (((struct process *)a)->amount > ((struct process *)b)->amount) if (((struct process *)a)->amount > ((struct process *)b)->amount)
return -1; return (-1);
if (((struct process *)a)->amount < ((struct process *)b)->amount) if (((struct process *)a)->amount < ((struct process *)b)->amount)
return 1; return (1);
return 0; return (0);
} }
int comparemem(const void *a, const void *b) int
comparemem(const void *a, const void *b)
{ {
if (((struct process *)a)->totalmem > ((struct process *)b)->totalmem) if (((struct process *)a)->totalmem > ((struct process *)b)->totalmem)
return -1; return (-1);
if (((struct process *)a)->totalmem < ((struct process *)b)->totalmem) if (((struct process *)a)->totalmem < ((struct process *)b)->totalmem)
return 1; return (1);
return 0; return (0);
} }
inline void proc_find_top(struct process **cpu, struct process **mem) inline void
proc_find_top(struct process **cpu, struct process **mem)
{ {
static int kd_init = 1; static int kd_init = 1;
struct kinfo_proc *p; struct kinfo_proc *p;
@ -602,10 +623,9 @@ inline void proc_find_top(struct process **cpu, struct process **mem)
if (kd_init) { if (kd_init) {
kd_init = 0; kd_init = 0;
if ((kd = if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL) {
O_RDONLY, "kvm_open")) == NULL) { fprintf(stderr, "Cannot read kvm.");
(void)fprintf(stderr, "Cannot read kvm.");
} }
} }
@ -614,26 +634,30 @@ inline void proc_find_top(struct process **cpu, struct process **mem)
/* we get total pages count again to be sure it is up to date */ /* we get total pages count again to be sure it is up to date */
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages) != 0) if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages) != 0)
CRIT_ERR("Cannot read sysctl \"vm.stats.vm.v_page_count\""); CRIT_ERR("Cannot read sysctl"
"\"vm.stats.vm.v_page_count\"");
p = kvm_getprocs(kd, KERN_PROC_PROC, 0, &n_processes); p = kvm_getprocs(kd, KERN_PROC_PROC, 0, &n_processes);
processes = malloc(n_processes * sizeof(struct process)); processes = malloc(n_processes * sizeof (struct process));
for (i = 0; i < n_processes; i++) { for (i = 0; i < n_processes; i++) {
if (!((p[i].ki_flag & P_SYSTEM)) && p[i].ki_comm != NULL) { if (!((p[i].ki_flag & P_SYSTEM)) &&
p[i].ki_comm != NULL) {
processes[j].pid = p[i].ki_pid; processes[j].pid = p[i].ki_pid;
processes[j].name = strdup(p[i].ki_comm); processes[j].name = strdup(p[i].ki_comm);
processes[j].amount = 100.0 * p[i].ki_pctcpu / FSCALE; processes[j].amount = 100.0 *
processes[j].totalmem = (float)(p[i].ki_rssize / (float)total_pages) * 100.0; p[i].ki_pctcpu / FSCALE;
processes[j].totalmem = (float)(p[i].ki_rssize /
(float)total_pages) * 100.0;
j++; j++;
} }
} }
qsort(processes, j - 1, sizeof(struct process), comparemem); qsort(processes, j - 1, sizeof (struct process), comparemem);
for (i = 0; i < 10; i++) { for (i = 0; i < 10; i++) {
struct process *tmp; struct process *tmp;
tmp = malloc(sizeof(struct process)); tmp = malloc(sizeof (struct process));
tmp->pid = processes[i].pid; tmp->pid = processes[i].pid;
tmp->amount = processes[i].amount; tmp->amount = processes[i].amount;
tmp->totalmem = processes[i].totalmem; tmp->totalmem = processes[i].totalmem;
@ -642,11 +666,11 @@ inline void proc_find_top(struct process **cpu, struct process **mem)
mem[i] = tmp; mem[i] = tmp;
} }
qsort(processes, j - 1, sizeof(struct process), comparecpu); qsort(processes, j - 1, sizeof (struct process), comparecpu);
for (i = 0; i < 10; i++) { for (i = 0; i < 10; i++) {
struct process *tmp; struct process *tmp;
tmp = malloc(sizeof(struct process)); tmp = malloc(sizeof (struct process));
tmp->pid = processes[i].pid; tmp->pid = processes[i].pid;
tmp->amount = processes[i].amount; tmp->amount = processes[i].amount;
tmp->totalmem = processes[i].totalmem; tmp->totalmem = processes[i].totalmem;
@ -654,145 +678,142 @@ inline void proc_find_top(struct process **cpu, struct process **mem)
cpu[i] = tmp; cpu[i] = tmp;
} }
#if defined(FREEBSD_DEBUG) #if defined(FREEBSD_DEBUG)
printf("=====\nmem\n"); printf("=====\nmem\n");
for (i = 0; i < 10; i++) { for (i = 0; i < 10; i++) {
printf("%d: %s(%d) %.2f\n", i, mem[i]->name, mem[i]->pid, mem[i]->totalmem); printf("%d: %s(%d) %.2f\n", i, mem[i]->name,
mem[i]->pid, mem[i]->totalmem);
} }
/* printf("=====\ncpu\n");
for (i = 0; i <= 10; i++) {
printf("%d: %s\n", i, cpu[i]->name);
}*/
#endif #endif
free(processes); free(processes);
}
}
#if defined(i386) || defined(__i386__)
#define APMDEV "/dev/apm"
#define APM_UNKNOWN 255
int
apm_getinfo(int fd, apm_info_t aip)
{
if (ioctl(fd, APMIO_GETINFO, aip) == -1)
return (-1);
return (0);
}
char
*get_apm_adapter()
{
int fd;
struct apm_info info;
fd = open(APMDEV, O_RDONLY);
if (fd < 0)
return ("ERR");
if (apm_getinfo(fd, &info) != 0) {
close(fd);
return ("ERR");
}
close(fd);
switch (info.ai_acline) {
case 0:
return ("off-line");
break;
case 1:
if (info.ai_batt_stat == 3)
return ("charging");
else
return ("on-line");
break;
default:
return ("unknown");
break;
}
}
char
*get_apm_battery_life()
{
int fd;
u_int batt_life;
struct apm_info info;
char *out;
out = (char *)calloc(16, sizeof (char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return (out);
}
if (apm_getinfo(fd, &info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return (out);
}
close(fd);
batt_life = info.ai_batt_life;
if (batt_life == APM_UNKNOWN)
strncpy(out, "unknown", 16);
else if (batt_life <= 100) {
snprintf(out, 16, "%d%%", batt_life);
return (out);
} else } else
return; strncpy(out, "ERR", 16);
return (out);
} }
#if defined(i386) || defined(__i386__) char
#define APMDEV "/dev/apm" *get_apm_battery_time()
#define APM_UNKNOWN 255
int apm_getinfo(int fd, apm_info_t aip)
{ {
if (ioctl(fd, APMIO_GETINFO, aip) == -1) int fd;
return -1; int batt_time;
int h, m, s;
struct apm_info info;
char *out;
return 0; out = (char *)calloc(16, sizeof (char));
}
char *get_apm_adapter() fd = open(APMDEV, O_RDONLY);
{ if (fd < 0) {
int fd; strncpy(out, "ERR", 16);
struct apm_info info; return (out);
}
fd = open(APMDEV, O_RDONLY); if (apm_getinfo(fd, &info) != 0) {
if (fd < 0)
return "ERR";
if (apm_getinfo(fd, &info) != 0) {
close(fd); close(fd);
return "ERR"; strncpy(out, "ERR", 16);
return (out);
} }
close(fd); close(fd);
switch (info.ai_acline) { batt_time = info.ai_batt_time;
case 0:
return "off-line";
break;
case 1:
if (info.ai_batt_stat == 3)
return "charging";
else
return "on-line";
break;
default:
return "unknown";
break;
}
}
char *get_apm_battery_life() if (batt_time == -1)
{
int fd;
u_int batt_life;
struct apm_info info;
char *out;
out = (char *)calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if (apm_getinfo(fd, &info) != 0 ) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_life = info.ai_batt_life;
if (batt_life == APM_UNKNOWN)
strncpy(out, "unknown", 16); strncpy(out, "unknown", 16);
else if (batt_life <= 100) { else {
snprintf(out, 20,"%d%%", batt_life); h = batt_time;
return out; s = h % 60;
} h /= 60;
else m = h % 60;
strncpy(out, "ERR", 16); h /= 60;
snprintf(out, 16, "%2d:%02d:%02d", h, m, s);
return out;
}
char *get_apm_battery_time()
{
int fd;
int batt_time;
int h, m, s;
struct apm_info info;
char *out;
out = (char *)calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
} }
if (apm_getinfo(fd, &info) != 0 ) { return (out);
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_time = info.ai_batt_time;
if (batt_time == -1)
strncpy(out, "unknown", 16);
else {
h = batt_time;
s = h % 60;
h /= 60;
m = h % 60;
h /= 60;
snprintf(out, 16, "%2d:%02d:%02d", h, m, s);
}
return out;
} }
#endif #endif
/* empty stub so conky links */ /* empty stub so conky links */
void free_all_processes(void) void
free_all_processes(void)
{ {
} }