1
0
mirror of https://github.com/Llewellynvdm/conky.git synced 2025-01-27 17:18:33 +00:00

Make cstyle.pl(1) happy.

git-svn-id: https://conky.svn.sourceforge.net/svnroot/conky/trunk/conky1@601 7f574dfc-610e-0410-a909-a81674777703
This commit is contained in:
Roman Bogorodskiy 2006-03-20 11:44:29 +00:00
parent c2fb9f583a
commit 1fb0efb5f1

View File

@ -30,12 +30,12 @@
#include "conky.h"
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
#define KELVTOC(x) ((x - 2732) / 10.0)
#define MAXSHOWDEVS 16
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof (var))
#define KELVTOC(x) ((x - 2732) / 10.0)
#define MAXSHOWDEVS 16
#if 0
#define FREEBSD_DEBUG
#define FREEBSD_DEBUG
#endif
inline void proc_find_top(struct process **cpu, struct process **mem);
@ -48,14 +48,14 @@ static int getsysctl(char *name, void *ptr, size_t len)
{
size_t nlen = len;
if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
return -1;
return (-1);
}
if (nlen != len) {
return -1;
return (-1);
}
return 0;
return (0);
}
static kvm_t *kd = NULL;
@ -72,20 +72,20 @@ static int swapmode(int *retavail, int *retfree)
if (kd_init) {
kd_init = 0;
if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
O_RDONLY, "kvm_open")) == NULL) {
(void) fprintf(stderr, "Cannot read kvm.");
return -1;
return (-1);
}
}
if (kd == NULL) {
return -1;
return (-1);
}
*retavail = 0;
*retfree = 0;
#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
n = kvm_getswapinfo(kd, swapary, 1, 0);
if (n < 0 || swapary[0].ksw_total == 0)
@ -95,33 +95,36 @@ static int swapmode(int *retavail, int *retfree)
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
n = (int) ((double) swapary[0].ksw_used * 100.0 /
(double) swapary[0].ksw_total);
(double) swapary[0].ksw_total);
return n;
return (n);
}
void prepare_update()
void
prepare_update()
{
}
void update_uptime()
void
update_uptime()
{
int mib[2] = { CTL_KERN, KERN_BOOTTIME };
struct timeval boottime;
time_t now;
size_t size = sizeof(boottime);
size_t size = sizeof (boottime);
if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1)
&& (boottime.tv_sec != 0)) {
time(&now);
info.uptime = now - boottime.tv_sec;
} else {
(void)fprintf(stderr, "Could not get uptime\n");
fprintf(stderr, "Could not get uptime\n");
info.uptime = 0;
}
}
void update_meminfo()
void
update_meminfo()
{
int total_pages, inactive_pages, free_pages;
int swap_avail, swap_free;
@ -129,16 +132,16 @@ void update_meminfo()
int pagesize = getpagesize();
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages))
(void)fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_page_count\"");
fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_page_count\"");
if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages))
(void)fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_free_count\"");
fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_free_count\"");
if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages))
(void)fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_inactive_count\"");
fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_inactive_count\"");
info.memmax = (total_pages * pagesize) >> 10;
info.mem =
@ -154,7 +157,8 @@ void update_meminfo()
}
}
void update_net_stats()
void
update_net_stats()
{
struct net_stat *ns;
double delta;
@ -188,7 +192,7 @@ void update_net_stats()
if (r < ns->last_read_recv)
ns->recv +=
((long long) 4294967295U -
ns->last_read_recv) + r;
ns->last_read_recv) + r;
else
ns->recv += (r - ns->last_read_recv);
@ -197,7 +201,7 @@ void update_net_stats()
if (t < ns->last_read_trans)
ns->trans +=
((long long) 4294967295U -
ns->last_read_trans) + t;
ns->last_read_trans) + t;
else
ns->trans += (t - ns->last_read_trans);
@ -213,7 +217,8 @@ void update_net_stats()
freeifaddrs(ifap);
}
void update_total_processes()
void
update_total_processes()
{
int n_processes;
static int kd_init = 1;
@ -221,8 +226,8 @@ void update_total_processes()
if (kd_init) {
kd_init = 0;
if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
(void)fprintf(stderr, "Cannot read kvm.");
O_RDONLY, "kvm_open")) == NULL) {
fprintf(stderr, "Cannot read kvm.");
return;
}
}
@ -236,7 +241,8 @@ void update_total_processes()
info.procs = n_processes;
}
void update_running_processes()
void
update_running_processes()
{
static int kd_init = 1;
struct kinfo_proc *p;
@ -245,9 +251,8 @@ void update_running_processes()
if (kd_init) {
kd_init = 0;
if ((kd =
kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
(void) fprintf(stderr, "Cannot read kvm.");
}
}
@ -275,11 +280,13 @@ struct cpu_load_struct {
struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} };
long cpu_used, oldtotal, oldused;
void get_cpu_count()
void
get_cpu_count()
{
/* int cpu_count = 0; */
/* XXX
/*
* XXX
* FreeBSD doesn't allow to get per CPU load stats
* on SMP machines. It's possible to get a CPU count,
* but as we fulfil only info.cpu_usage[0], it's better
@ -292,17 +299,18 @@ void get_cpu_count()
#endif
info.cpu_count = 1;
info.cpu_usage = malloc(info.cpu_count * sizeof(float));
info.cpu_usage = malloc(info.cpu_count * sizeof (float));
if (info.cpu_usage == NULL)
CRIT_ERR("malloc");
}
/* XXX: SMP support */
void update_cpu_usage()
void
update_cpu_usage()
{
long used, total;
long cp_time[CPUSTATES];
size_t len = sizeof(cp_time);
size_t len = sizeof (cp_time);
if (cpu_setup == 0) {
get_cpu_count();
@ -324,7 +332,8 @@ void update_cpu_usage()
fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3];
if ((total - oldtotal) != 0) {
info.cpu_usage[0] = ((double) (used - oldused)) / (double) (total - oldtotal);
info.cpu_usage[0] = ((double) (used - oldused)) /
(double) (total - oldtotal);
} else {
info.cpu_usage[0] = 0;
}
@ -333,12 +342,14 @@ void update_cpu_usage()
oldtotal = total;
}
double get_i2c_info(int *fd, int arg, char *devtype, char *type)
double
get_i2c_info(int *fd, int arg, char *devtype, char *type)
{
return 0;
return (0);
}
void update_load_average()
void
update_load_average()
{
double v[3];
getloadavg(v, 3);
@ -348,30 +359,32 @@ void update_load_average()
info.loadavg[2] = (float) v[2];
}
double get_acpi_temperature(int fd)
double
get_acpi_temperature(int fd)
{
int temp;
if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) {
(void)fprintf(stderr,
"Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n");
return 0.0;
fprintf(stderr,
"Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n");
return (0.0);
}
return KELVTOC(temp);
return (KELVTOC(temp));
}
void get_battery_stuff(char *buf, unsigned int n, const char *bat)
void
get_battery_stuff(char *buf, unsigned int n, const char *bat)
{
int battime;
if (GETSYSCTL("hw.acpi.battery.time", battime))
(void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.battery.time\"\n");
"Cannot read sysctl \"hw.acpi.battery.time\"\n");
if (battime != -1)
snprintf(buf, n, "Discharging, remaining %d:%2.2d",
battime / 60, battime % 60);
battime / 60, battime % 60);
else
snprintf(buf, n, "Battery is charging");
}
@ -380,15 +393,17 @@ int
open_i2c_sensor(const char *dev, const char *type, int n, int *div,
char *devtype)
{
return 0;
return (0);
}
int open_acpi_temperature(const char *name)
int
open_acpi_temperature(const char *name)
{
return 0;
return (0);
}
void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size)
void
get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size)
{
int state;
@ -396,139 +411,139 @@ void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size)
return;
if (GETSYSCTL("hw.acpi.acline", state)) {
(void)fprintf(stderr,
"Cannot read sysctl \"hw.acpi.acline\"\n");
fprintf(stderr,
"Cannot read sysctl \"hw.acpi.acline\"\n");
return;
}
if (state)
strncpy(p_client_buffer, "Running on AC Power", client_buffer_size);
strncpy(p_client_buffer, "Running on AC Power",
client_buffer_size);
else
strncpy(p_client_buffer, "Running on battery", client_buffer_size);
strncpy(p_client_buffer, "Running on battery",
client_buffer_size);
return;
}
void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size)
void
get_acpi_fan(char *p_client_buffer, size_t client_buffer_size)
{
if (!p_client_buffer || client_buffer_size <= 0)
return;
/* not implemented */
memset(p_client_buffer, 0, client_buffer_size);
return;
}
void get_adt746x_cpu(char *p_client_buffer, size_t client_buffer_size)
void
get_adt746x_cpu(char *p_client_buffer, size_t client_buffer_size)
{
if (!p_client_buffer || client_buffer_size <= 0)
return;
/* not implemented */
memset(p_client_buffer, 0, client_buffer_size);
return;
}
void get_adt746x_fan(char *p_client_buffer, size_t client_buffer_size)
void
get_adt746x_fan(char *p_client_buffer, size_t client_buffer_size)
{
if (!p_client_buffer || client_buffer_size <= 0)
return;
/* not implemented */
memset(p_client_buffer,0,client_buffer_size);
return;
memset(p_client_buffer, 0, client_buffer_size);
}
/* rdtsc() and get_freq_dynamic() copied from linux.c */
#if defined(__i386) || defined(__x86_64)
__inline__ unsigned long long int rdtsc()
__inline__ unsigned long long int
rdtsc()
{
unsigned long long int x;
__asm__ volatile (".byte 0x0f, 0x31":"=A" (x));
return x;
unsigned long long int x;
__asm__ volatile(".byte 0x0f, 0x31":"=A" (x));
return (x);
}
#endif
/* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
void get_freq_dynamic(char * p_client_buffer, size_t client_buffer_size, char * p_format, int divisor)
void
get_freq_dynamic(char *p_client_buffer, size_t client_buffer_size,
char *p_format, int divisor)
{
#if defined(__i386) || defined(__x86_64)
struct timezone tz;
struct timeval tvstart, tvstop;
unsigned long long cycles[2]; /* gotta be 64 bit */
unsigned int microseconds; /* total time taken */
struct timezone tz;
struct timeval tvstart, tvstop;
unsigned long long cycles[2]; /* gotta be 64 bit */
unsigned int microseconds; /* total time taken */
memset(&tz, 0, sizeof(tz));
memset(&tz, 0, sizeof (tz));
/* get this function in cached memory */
gettimeofday(&tvstart, &tz);
cycles[0] = rdtsc();
gettimeofday(&tvstart, &tz);
/* get this function in cached memory */
gettimeofday(&tvstart, &tz);
cycles[0] = rdtsc();
gettimeofday(&tvstart, &tz);
/* we don't trust that this is any specific length of time */
usleep(100);
cycles[1] = rdtsc();
gettimeofday(&tvstop, &tz);
microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) +
(tvstop.tv_usec - tvstart.tv_usec);
/* we don't trust that this is any specific length of time */
usleep(100);
cycles[1] = rdtsc();
gettimeofday(&tvstop, &tz);
microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) +
(tvstop.tv_usec - tvstart.tv_usec);
snprintf(p_client_buffer, client_buffer_size, p_format,
(float)((cycles[1] - cycles[0]) / microseconds) / divisor);
return;
(float)((cycles[1] - cycles[0]) / microseconds) / divisor);
#else
get_freq(p_client_buffer, client_buffer_size, p_format, divisor);
return;
#endif
}
/* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
void get_freq(char *p_client_buffer, size_t client_buffer_size, char *p_format, int divisor)
void
get_freq(char *p_client_buffer, size_t client_buffer_size,
char *p_format, int divisor)
{
int freq;
if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0)
return;
if (!p_client_buffer || client_buffer_size <= 0
|| !p_format || divisor <= 0)
return;
if (GETSYSCTL("dev.cpu.0.freq", freq) == 0)
{
snprintf(p_client_buffer, client_buffer_size, p_format, freq/divisor);
}
snprintf(p_client_buffer, client_buffer_size,
p_format, freq/divisor);
else
{
snprintf(p_client_buffer, client_buffer_size, p_format, (float)0);
}
return;
snprintf(p_client_buffer, client_buffer_size, p_format, 0f);
}
void update_top()
void
update_top()
{
proc_find_top(info.cpu, info.memu);
}
void update_wifi_stats()
void
update_wifi_stats()
{
/* XXX */
}
void update_diskio()
void
update_diskio()
{
int devs_count,
int devs_count,
num_selected,
num_selections;
struct device_selection *dev_select = NULL;
long select_generation;
int dn;
struct device_selection *dev_select = NULL;
long select_generation;
int dn;
static struct statinfo statinfo_cur;
u_int64_t diskio_current = 0;
bzero(&statinfo_cur, sizeof(statinfo_cur));
statinfo_cur.dinfo = (struct devinfo *)malloc(sizeof(struct devinfo));
bzero(statinfo_cur.dinfo, sizeof(struct devinfo));
bzero(&statinfo_cur, sizeof (statinfo_cur));
statinfo_cur.dinfo = (struct devinfo *)malloc(sizeof (struct devinfo));
bzero(statinfo_cur.dinfo, sizeof (struct devinfo));
if (devstat_getdevs(NULL, &statinfo_cur) < 0)
return;
@ -540,12 +555,13 @@ void update_diskio()
NULL, 0, DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) {
for (dn = 0; dn < devs_count; ++dn) {
int di;
struct devstat *dev;
struct devstat *dev;
di = dev_select[dn].position;
dev = &statinfo_cur.dinfo->devices[di];
dev = &statinfo_cur.dinfo->devices[di];
diskio_current += dev->bytes[DEVSTAT_READ] + dev->bytes[DEVSTAT_WRITE];
diskio_CUrrent += dev->bytes[DEVSTAT_READ] +
dev->bytes[DEVSTAT_WRITE];
}
free(dev_select);
@ -553,14 +569,16 @@ void update_diskio()
/*
* Since we return (diskio_total_current - diskio_total_old), first
* frame will be way too high (it will be equal to diskio_total_current, i.e.
* all disk I/O since boot). That's why it is better to return 0 first time;
* frame will be way too high (it will be equal to
* diskio_total_current, i.e. all disk I/O since boot). That's why
* it is better to return 0 first time;
*/
if (diskio_setup == 0) {
diskio_setup = 1;
diskio_value = 0;
} else
diskio_value = (unsigned int)((diskio_current - diskio_prev)/1024);
diskio_value = (unsigned int)((diskio_current - diskio_prev)/
1024);
diskio_prev = diskio_current;
free(statinfo_cur.dinfo);
@ -570,29 +588,32 @@ void update_diskio()
* While topless is obviously better, top is also not bad.
*/
int comparecpu(const void *a, const void *b)
int
comparecpu(const void *a, const void *b)
{
if (((struct process *)a)->amount > ((struct process *)b)->amount)
return -1;
return (-1);
if (((struct process *)a)->amount < ((struct process *)b)->amount)
return 1;
if (((struct process *)a)->amount < ((struct process *)b)->amount)
return (1);
return 0;
return (0);
}
int comparemem(const void *a, const void *b)
int
comparemem(const void *a, const void *b)
{
if (((struct process *)a)->totalmem > ((struct process *)b)->totalmem)
return -1;
return (-1);
if (((struct process *)a)->totalmem < ((struct process *)b)->totalmem)
return 1;
return (1);
return 0;
return (0);
}
inline void proc_find_top(struct process **cpu, struct process **mem)
inline void
proc_find_top(struct process **cpu, struct process **mem)
{
static int kd_init = 1;
struct kinfo_proc *p;
@ -602,10 +623,9 @@ inline void proc_find_top(struct process **cpu, struct process **mem)
if (kd_init) {
kd_init = 0;
if ((kd =
kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
(void)fprintf(stderr, "Cannot read kvm.");
if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
fprintf(stderr, "Cannot read kvm.");
}
}
@ -614,26 +634,30 @@ inline void proc_find_top(struct process **cpu, struct process **mem)
/* we get total pages count again to be sure it is up to date */
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages) != 0)
CRIT_ERR("Cannot read sysctl \"vm.stats.vm.v_page_count\"");
CRIT_ERR("Cannot read sysctl"
"\"vm.stats.vm.v_page_count\"");
p = kvm_getprocs(kd, KERN_PROC_PROC, 0, &n_processes);
processes = malloc(n_processes * sizeof(struct process));
processes = malloc(n_processes * sizeof (struct process));
for (i = 0; i < n_processes; i++) {
if (!((p[i].ki_flag & P_SYSTEM)) && p[i].ki_comm != NULL) {
if (!((p[i].ki_flag & P_SYSTEM)) &&
p[i].ki_comm != NULL) {
processes[j].pid = p[i].ki_pid;
processes[j].name = strdup(p[i].ki_comm);
processes[j].amount = 100.0 * p[i].ki_pctcpu / FSCALE;
processes[j].totalmem = (float)(p[i].ki_rssize / (float)total_pages) * 100.0;
processes[j].amount = 100.0 *
p[i].ki_pctcpu / FSCALE;
processes[j].totalmem = (float)(p[i].ki_rssize /
(float)total_pages) * 100.0;
j++;
}
}
qsort(processes, j - 1, sizeof(struct process), comparemem);
qsort(processes, j - 1, sizeof (struct process), comparemem);
for (i = 0; i < 10; i++) {
struct process *tmp;
tmp = malloc(sizeof(struct process));
tmp = malloc(sizeof (struct process));
tmp->pid = processes[i].pid;
tmp->amount = processes[i].amount;
tmp->totalmem = processes[i].totalmem;
@ -642,11 +666,11 @@ inline void proc_find_top(struct process **cpu, struct process **mem)
mem[i] = tmp;
}
qsort(processes, j - 1, sizeof(struct process), comparecpu);
qsort(processes, j - 1, sizeof (struct process), comparecpu);
for (i = 0; i < 10; i++) {
struct process *tmp;
tmp = malloc(sizeof(struct process));
tmp = malloc(sizeof (struct process));
tmp->pid = processes[i].pid;
tmp->amount = processes[i].amount;
tmp->totalmem = processes[i].totalmem;
@ -658,141 +682,138 @@ inline void proc_find_top(struct process **cpu, struct process **mem)
#if defined(FREEBSD_DEBUG)
printf("=====\nmem\n");
for (i = 0; i < 10; i++) {
printf("%d: %s(%d) %.2f\n", i, mem[i]->name, mem[i]->pid, mem[i]->totalmem);
printf("%d: %s(%d) %.2f\n", i, mem[i]->name,
mem[i]->pid, mem[i]->totalmem);
}
/* printf("=====\ncpu\n");
for (i = 0; i <= 10; i++) {
printf("%d: %s\n", i, cpu[i]->name);
}*/
#endif
free(processes);
}
}
#if defined(i386) || defined(__i386__)
#define APMDEV "/dev/apm"
#define APM_UNKNOWN 255
int
apm_getinfo(int fd, apm_info_t aip)
{
if (ioctl(fd, APMIO_GETINFO, aip) == -1)
return (-1);
return (0);
}
char
*get_apm_adapter()
{
int fd;
struct apm_info info;
fd = open(APMDEV, O_RDONLY);
if (fd < 0)
return ("ERR");
if (apm_getinfo(fd, &info) != 0) {
close(fd);
return ("ERR");
}
close(fd);
switch (info.ai_acline) {
case 0:
return ("off-line");
break;
case 1:
if (info.ai_batt_stat == 3)
return ("charging");
else
return ("on-line");
break;
default:
return ("unknown");
break;
}
}
char
*get_apm_battery_life()
{
int fd;
u_int batt_life;
struct apm_info info;
char *out;
out = (char *)calloc(16, sizeof (char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return (out);
}
if (apm_getinfo(fd, &info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return (out);
}
close(fd);
batt_life = info.ai_batt_life;
if (batt_life == APM_UNKNOWN)
strncpy(out, "unknown", 16);
else if (batt_life <= 100) {
snprintf(out, 16, "%d%%", batt_life);
return (out);
} else
return;
strncpy(out, "ERR", 16);
return (out);
}
#if defined(i386) || defined(__i386__)
#define APMDEV "/dev/apm"
#define APM_UNKNOWN 255
int apm_getinfo(int fd, apm_info_t aip)
char
*get_apm_battery_time()
{
if (ioctl(fd, APMIO_GETINFO, aip) == -1)
return -1;
int fd;
int batt_time;
int h, m, s;
struct apm_info info;
char *out;
return 0;
}
out = (char *)calloc(16, sizeof (char));
char *get_apm_adapter()
{
int fd;
struct apm_info info;
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return (out);
}
fd = open(APMDEV, O_RDONLY);
if (fd < 0)
return "ERR";
if (apm_getinfo(fd, &info) != 0) {
if (apm_getinfo(fd, &info) != 0) {
close(fd);
return "ERR";
strncpy(out, "ERR", 16);
return (out);
}
close(fd);
switch (info.ai_acline) {
case 0:
return "off-line";
break;
case 1:
if (info.ai_batt_stat == 3)
return "charging";
else
return "on-line";
break;
default:
return "unknown";
break;
}
}
batt_time = info.ai_batt_time;
char *get_apm_battery_life()
{
int fd;
u_int batt_life;
struct apm_info info;
char *out;
out = (char *)calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if (apm_getinfo(fd, &info) != 0 ) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_life = info.ai_batt_life;
if (batt_life == APM_UNKNOWN)
if (batt_time == -1)
strncpy(out, "unknown", 16);
else if (batt_life <= 100) {
snprintf(out, 20,"%d%%", batt_life);
return out;
}
else
strncpy(out, "ERR", 16);
return out;
}
char *get_apm_battery_time()
{
int fd;
int batt_time;
int h, m, s;
struct apm_info info;
char *out;
out = (char *)calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
else {
h = batt_time;
s = h % 60;
h /= 60;
m = h % 60;
h /= 60;
snprintf(out, 16, "%2d:%02d:%02d", h, m, s);
}
if (apm_getinfo(fd, &info) != 0 ) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_time = info.ai_batt_time;
if (batt_time == -1)
strncpy(out, "unknown", 16);
else {
h = batt_time;
s = h % 60;
h /= 60;
m = h % 60;
h /= 60;
snprintf(out, 16, "%2d:%02d:%02d", h, m, s);
}
return out;
return (out);
}
#endif
/* empty stub so conky links */
void free_all_processes(void)
void
free_all_processes(void)
{
}