/* * * Conky, a system monitor, based on torsmo * * Any original torsmo code is licensed under the BSD license * * All code written since the fork of torsmo is licensed under the GPL * * Please see COPYING for details * * Copyright (c) 2004, Hannu Saransaari and Lauri Hakkarainen * Copyright (c) 2005-2021 Brenden Matthews, Philip Kovacs, et. al. * (see AUTHORS) * All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "netbsd.h" #include "net_stat.h" static kvm_t *kd = nullptr; int kd_init = 0, nkd_init = 0; u_int32_t sensvalue; char errbuf[_POSIX2_LINE_MAX]; static int init_kvm(void) { if (kd_init) { return 0; } kd = kvm_openfiles(nullptr, NULL, NULL, KVM_NO_FILES, errbuf); if (kd == nullptr) { warnx("cannot kvm_openfiles: %s", errbuf); return -1; } kd_init = 1; return 0; } static int swapmode(int *retavail, int *retfree) { int n; struct swapent *sep; *retavail = 0; *retfree = 0; n = swapctl(SWAP_NSWAP, 0, 0); if (n < 1) { warn("could not get swap information"); return 0; } sep = (struct swapent *)malloc(n * (sizeof(*sep))); if (sep == nullptr) { warn("memory allocation failed"); return 0; } if (swapctl(SWAP_STATS, (void *)sep, n) < n) { warn("could not get swap stats"); return 0; } for (; n > 0; n--) { *retavail += (int)dbtob(sep[n - 1].se_nblks); *retfree += (int)dbtob(sep[n - 1].se_nblks - sep[n - 1].se_inuse); } *retavail = (int)(*retavail / 1024); *retfree = (int)(*retfree / 1024); return 1; } void prepare_update() {} void update_uptime() { int mib[2] = {CTL_KERN, KERN_BOOTTIME}; struct timeval boottime; time_t now; int size = sizeof(boottime); if ((sysctl(mib, 2, &boottime, &size, nullptr, 0) != -1) && (boottime.tv_sec != 0)) { time(&now); info.uptime = now - boottime.tv_sec; } else { warn("could not get uptime"); info.uptime = 0; } } int check_mount(struct text_object *obj) { /* stub */ (void)obj; return 0; } void update_meminfo() { int mib[] = {CTL_VM, VM_UVMEXP2}; int total_pages, inactive_pages, free_pages; int swap_avail, swap_free; const int pagesize = getpagesize(); struct uvmexp_sysctl uvmexp; size_t size = sizeof(uvmexp); if (sysctl(mib, 2, &uvmexp, &size, nullptr, 0) < 0) { warn("could not get memory info"); return; } total_pages = uvmexp.npages; free_pages = uvmexp.free; inactive_pages = uvmexp.inactive; info.memmax = (total_pages * pagesize) >> 10; info.mem = ((total_pages - free_pages - inactive_pages) * pagesize) >> 10; info.memwithbuffers = info.mem; info.memeasyfree = info.memfree = info.memmax - info.mem; info.legacymem = info.mem; if (swapmode(&swap_avail, &swap_free) >= 0) { info.swapmax = swap_avail; info.swap = (swap_avail - swap_free); info.swapfree = swap_free; } } void update_net_stats() { int i; double delta; struct ifnet ifnet; struct ifnet_head ifhead; /* interfaces are in a tail queue */ u_long ifnetaddr; static struct nlist namelist[] = {{"_ifnet"}, {nullptr}}; static kvm_t *nkd; if (!nkd_init) { nkd = kvm_openfiles(nullptr, NULL, NULL, O_RDONLY, errbuf); if (nkd == nullptr) { warnx("cannot kvm_openfiles: %s", errbuf); warnx("maybe you need to setgid kmem this program?"); return; } else if (kvm_nlist(nkd, namelist) != 0) { warn("cannot kvm_nlist"); return; } else { nkd_init = 1; } } if (kvm_read(nkd, (u_long)namelist[0].n_value, (void *)&ifhead, sizeof(ifhead)) < 0) { warn("cannot kvm_read"); return; } /* get delta */ delta = current_update_time - last_update_time; if (delta <= 0.0001) { return; } for (i = 0, ifnetaddr = (u_long)ifhead.tqh_first; ifnet.if_list.tqe_next && i < 16; ifnetaddr = (u_long)ifnet.if_list.tqe_next, i++) { struct net_stat *ns; long long last_recv, last_trans; kvm_read(nkd, (u_long)ifnetaddr, (void *)&ifnet, sizeof(ifnet)); ns = get_net_stat(ifnet.if_xname, nullptr, NULL); ns->up = 1; last_recv = ns->recv; last_trans = ns->trans; if (ifnet.if_ibytes < ns->last_read_recv) { ns->recv += ((long long)4294967295U - ns->last_read_recv) + ifnet.if_ibytes; } else { ns->recv += (ifnet.if_ibytes - ns->last_read_recv); } ns->last_read_recv = ifnet.if_ibytes; if (ifnet.if_obytes < ns->last_read_trans) { ns->trans += ((long long)4294967295U - ns->last_read_trans) + ifnet.if_obytes; } else { ns->trans += (ifnet.if_obytes - ns->last_read_trans); } ns->last_read_trans = ifnet.if_obytes; ns->recv += (ifnet.if_ibytes - ns->last_read_recv); ns->last_read_recv = ifnet.if_ibytes; ns->trans += (ifnet.if_obytes - ns->last_read_trans); ns->last_read_trans = ifnet.if_obytes; ns->recv_speed = (ns->recv - last_recv) / delta; ns->trans_speed = (ns->trans - last_trans) / delta; } } int update_total_processes() { /* It's easier to use kvm here than sysctl */ int n_processes; info.procs = 0; if (init_kvm() < 0) { return; } else { kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2), &n_processes); } info.procs = n_processes; return 0; } void update_running_processes() { struct kinfo_proc2 *p; int n_processes; int i, cnt = 0; info.run_procs = 0; if (init_kvm() < 0) { return; } else { p = kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2), &n_processes); for (i = 0; i < n_processes; i++) { if (p[i].p_stat == LSRUN || p[i].p_stat == LSIDL || p[i].p_stat == LSONPROC) { cnt++; } } } info.run_procs = cnt; } struct cpu_load_struct { unsigned long load[5]; }; struct cpu_load_struct fresh = {{0, 0, 0, 0, 0}}; long cpu_used, oldtotal, oldused; void update_cpu_usage() { long used, total; static u_int64_t cp_time[CPUSTATES]; size_t len = sizeof(cp_time); info.cpu_usage = 0; if (sysctlbyname("kern.cp_time", &cp_time, &len, nullptr, 0) < 0) { warn("cannot get kern.cp_time"); } fresh.load[0] = cp_time[CP_USER]; fresh.load[1] = cp_time[CP_NICE]; fresh.load[2] = cp_time[CP_SYS]; fresh.load[3] = cp_time[CP_IDLE]; fresh.load[4] = cp_time[CP_IDLE]; used = fresh.load[0] + fresh.load[1] + fresh.load[2]; total = fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3]; if ((total - oldtotal) != 0) { info.cpu_usage = ((double)(used - oldused)) / (double)(total - oldtotal); } else { info.cpu_usage = 0; } oldused = used; oldtotal = total; } void free_cpu(struct text_object *) { /* no-op */ } void update_load_average() { double v[3]; getloadavg(v, 3); info.loadavg[0] = (float)v[0]; info.loadavg[1] = (float)v[1]; info.loadavg[2] = (float)v[2]; } double get_acpi_temperature(int fd) { return -1; } void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item) {} int open_acpi_temperature(const char *name) { return -1; } void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size, const char *adapter) { (void)adapter; // only linux uses this if (!p_client_buffer || client_buffer_size <= 0) { return; } /* not implemented */ memset(p_client_buffer, 0, client_buffer_size); } /* char *get_acpi_fan() */ void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) { if (!p_client_buffer || client_buffer_size <= 0) { return; } /* not implemented */ memset(p_client_buffer, 0, client_buffer_size); } int get_entropy_avail(unsigned int *val) { return 1; } int get_entropy_poolsize(unsigned int *val) { return 1; }