/* -*- mode: c; c-basic-offset: 4; tab-width: 4; indent-tabs-mode: t -*-
* vim: ts=4 sw=4 noet ai cindent syntax=c
*
* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2004, Hannu Saransaari and Lauri Hakkarainen
* Copyright (c) 2007 Toni Spets
* Copyright (c) 2005-2010 Brenden Matthews, Philip Kovacs, et. al.
* (see AUTHORS)
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include "conky.h"
#include "logging.h"
#include "common.h"
#include "linux.h"
#include "net_stat.h"
#include "diskio.h"
#include "temphelper.h"
#include
#include
#include
#include
#include
#include
#include
#ifndef HAVE_CLOCK_GETTIME
#include
#endif
#include
#include
// #include
#include
#include "top.h"
#include
#include
#include
#include
#include
#include
#ifdef _NET_IF_H
#define _LINUX_IF_H
#endif
#include
#include
#include
/* The following ifdefs were adapted from gkrellm */
#include
#if !defined(MD_MAJOR)
#define MD_MAJOR 9
#endif
#if !defined(LVM_BLK_MAJOR)
#define LVM_BLK_MAJOR 58
#endif
#if !defined(NBD_MAJOR)
#define NBD_MAJOR 43
#endif
#ifdef HAVE_IWLIB
#include
#endif
struct sysfs {
int fd;
int arg;
char devtype[256];
char type[64];
float factor, offset;
};
#define SHORTSTAT_TEMPL "%*s %llu %llu %llu"
#define LONGSTAT_TEMPL "%*s %llu %llu %llu "
/* This flag tells the linux routines to use the /proc system where possible,
* even if other api's are available, e.g. sysinfo() or getloadavg().
* the reason for this is to allow for /proc-based distributed monitoring.
* using a flag in this manner creates less confusing code. */
static int prefer_proc = 0;
void prepare_update(void)
{
}
void update_uptime(void)
{
#ifdef HAVE_SYSINFO
if (!prefer_proc) {
struct sysinfo s_info;
sysinfo(&s_info);
info.uptime = (double) s_info.uptime;
} else
#endif
{
static int rep = 0;
FILE *fp;
if (!(fp = open_file("/proc/uptime", &rep))) {
info.uptime = 0.0;
return;
}
fscanf(fp, "%lf", &info.uptime);
fclose(fp);
}
}
int check_mount(char *s)
{
int ret = 0;
FILE *mtab = fopen("/etc/mtab", "r");
if (mtab) {
char buf1[256], buf2[128];
while (fgets(buf1, 256, mtab)) {
sscanf(buf1, "%*s %128s", buf2);
if (!strcmp(s, buf2)) {
ret = 1;
break;
}
}
fclose(mtab);
} else {
NORM_ERR("Could not open mtab");
}
return ret;
}
/* these things are also in sysinfo except Buffers:
* (that's why I'm reading them from proc) */
void update_meminfo(void)
{
FILE *meminfo_fp;
static int rep = 0;
/* unsigned int a; */
char buf[256];
info.mem = info.memmax = info.swap = info.swapfree = info.swapmax = info.bufmem =
info.buffers = info.cached = info.memfree = info.memeasyfree = 0;
if (!(meminfo_fp = open_file("/proc/meminfo", &rep))) {
return;
}
while (!feof(meminfo_fp)) {
if (fgets(buf, 255, meminfo_fp) == NULL) {
break;
}
if (strncmp(buf, "MemTotal:", 9) == 0) {
sscanf(buf, "%*s %llu", &info.memmax);
} else if (strncmp(buf, "MemFree:", 8) == 0) {
sscanf(buf, "%*s %llu", &info.memfree);
} else if (strncmp(buf, "SwapTotal:", 10) == 0) {
sscanf(buf, "%*s %llu", &info.swapmax);
} else if (strncmp(buf, "SwapFree:", 9) == 0) {
sscanf(buf, "%*s %llu", &info.swapfree);
} else if (strncmp(buf, "Buffers:", 8) == 0) {
sscanf(buf, "%*s %llu", &info.buffers);
} else if (strncmp(buf, "Cached:", 7) == 0) {
sscanf(buf, "%*s %llu", &info.cached);
}
}
info.mem = info.memmax - info.memfree;
info.memeasyfree = info.memfree;
info.swap = info.swapmax - info.swapfree;
info.bufmem = info.cached + info.buffers;
fclose(meminfo_fp);
}
int get_laptop_mode(void)
{
FILE *fp;
int val = -1;
if ((fp = fopen("/proc/sys/vm/laptop_mode", "r")) != NULL)
fscanf(fp, "%d\n", &val);
fclose(fp);
return val;
}
/* my system says:
* # cat /sys/block/sda/queue/scheduler
* noop [anticipatory] cfq
*/
char *get_ioscheduler(char *disk)
{
FILE *fp;
char buf[128];
if (!disk)
return strndup("n/a", text_buffer_size);
snprintf(buf, 127, "/sys/block/%s/queue/scheduler", disk);
if ((fp = fopen(buf, "r")) == NULL) {
return strndup("n/a", text_buffer_size);
}
while (!feof(fp)) {
fscanf(fp, "%127s", buf);
if (buf[0] == '[') {
buf[strlen(buf) - 1] = '\0';
fclose(fp);
return strndup(buf + 1, text_buffer_size);
}
}
fclose(fp);
return strndup("n/a", text_buffer_size);
}
static struct {
char *iface;
char *ip;
int count;
} gw_info;
#define COND_FREE(x) if(x) free(x); x = 0
#define SAVE_SET_STRING(x, y) \
if (x && strcmp((char *)x, (char *)y)) { \
free(x); \
x = strndup("multiple", text_buffer_size); \
} else if (!x) { \
x = strndup(y, text_buffer_size); \
}
void update_gateway_info_failure(const char *reason)
{
if(reason != NULL) {
perror(reason);
}
//2 pointers to 1 location causes a crash when we try to free them both
gw_info.iface = strndup("failed", text_buffer_size);
gw_info.ip = strndup("failed", text_buffer_size);
}
/* Iface Destination Gateway Flags RefCnt Use Metric Mask MTU Window IRTT */
#define RT_ENTRY_FORMAT "%63s %lx %lx %x %*d %*d %*d %lx %*d %*d %*d\n"
void update_gateway_info(void)
{
FILE *fp;
struct in_addr ina;
char iface[64];
unsigned long dest, gate, mask;
unsigned int flags;
COND_FREE(gw_info.iface);
COND_FREE(gw_info.ip);
gw_info.count = 0;
if ((fp = fopen("/proc/net/route", "r")) == NULL) {
update_gateway_info_failure("fopen()");
return;
}
/* skip over the table header line, which is always present */
fscanf(fp, "%*[^\n]\n");
while (!feof(fp)) {
if(fscanf(fp, RT_ENTRY_FORMAT,
iface, &dest, &gate, &flags, &mask) != 5) {
update_gateway_info_failure("fscanf()");
break;
}
if (!(dest || mask) && ((flags & RTF_GATEWAY) || !gate) ) {
gw_info.count++;
SAVE_SET_STRING(gw_info.iface, iface)
ina.s_addr = gate;
SAVE_SET_STRING(gw_info.ip, inet_ntoa(ina))
}
}
fclose(fp);
return;
}
void free_gateway_info(void)
{
if (gw_info.iface)
free(gw_info.iface);
if (gw_info.ip)
free(gw_info.ip);
memset(&gw_info, 0, sizeof(gw_info));
}
int gateway_exists(void)
{
return !!gw_info.count;
}
void print_gateway_iface(char *p, int p_max_size)
{
snprintf(p, p_max_size, "%s", gw_info.iface);
}
void print_gateway_ip(char *p, int p_max_size)
{
snprintf(p, p_max_size, "%s", gw_info.ip);
}
void update_net_stats(void)
{
FILE *net_dev_fp;
static int rep = 0;
static char first = 1;
// FIXME: arbitrary size chosen to keep code simple.
int i, i2;
unsigned int curtmp1, curtmp2;
unsigned int k;
struct ifconf conf;
char buf[256];
double delta;
#ifdef HAVE_IWLIB
// wireless info variables
int skfd, has_bitrate = 0;
struct wireless_info *winfo;
struct iwreq wrq;
#endif
/* get delta */
delta = current_update_time - last_update_time;
if (delta <= 0.0001) {
return;
}
/* open file and ignore first two lines */
if (!(net_dev_fp = open_file("/proc/net/dev", &rep))) {
clear_net_stats();
return;
}
fgets(buf, 255, net_dev_fp); /* garbage */
fgets(buf, 255, net_dev_fp); /* garbage (field names) */
/* read each interface */
for (i2 = 0; i2 < MAX_NET_INTERFACES; i2++) {
struct net_stat *ns;
char *s, *p;
char temp_addr[18];
long long r, t, last_recv, last_trans;
if (fgets(buf, 255, net_dev_fp) == NULL) {
break;
}
p = buf;
while (isspace((int) *p)) {
p++;
}
s = p;
while (*p && *p != ':') {
p++;
}
if (*p == '\0') {
continue;
}
*p = '\0';
p++;
ns = get_net_stat(s, NULL, NULL);
ns->up = 1;
memset(&(ns->addr.sa_data), 0, 14);
memset(ns->addrs, 0, 17 * MAX_NET_INTERFACES + 1); /* Up to 17 chars per ip, max MAX_NET_INTERFACES interfaces. Nasty memory usage... */
last_recv = ns->recv;
last_trans = ns->trans;
/* bytes packets errs drop fifo frame compressed multicast|bytes ... */
sscanf(p, "%lld %*d %*d %*d %*d %*d %*d %*d %lld",
&r, &t);
/* if recv or trans is less than last time, an overflow happened */
if (r < ns->last_read_recv) {
last_recv = 0;
} else {
ns->recv += (r - ns->last_read_recv);
}
ns->last_read_recv = r;
if (t < ns->last_read_trans) {
last_trans = 0;
} else {
ns->trans += (t - ns->last_read_trans);
}
ns->last_read_trans = t;
/*** ip addr patch ***/
i = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
conf.ifc_buf = malloc(sizeof(struct ifreq) * MAX_NET_INTERFACES);
conf.ifc_len = sizeof(struct ifreq) * MAX_NET_INTERFACES;
memset(conf.ifc_buf, 0, conf.ifc_len);
ioctl((long) i, SIOCGIFCONF, &conf);
for (k = 0; k < conf.ifc_len / sizeof(struct ifreq); k++) {
struct net_stat *ns2;
if (!(((struct ifreq *) conf.ifc_buf) + k))
break;
ns2 = get_net_stat(
((struct ifreq *) conf.ifc_buf)[k].ifr_ifrn.ifrn_name, NULL, NULL);
ns2->addr = ((struct ifreq *) conf.ifc_buf)[k].ifr_ifru.ifru_addr;
sprintf(temp_addr, "%u.%u.%u.%u, ",
ns2->addr.sa_data[2] & 255,
ns2->addr.sa_data[3] & 255,
ns2->addr.sa_data[4] & 255,
ns2->addr.sa_data[5] & 255);
if(NULL == strstr(ns2->addrs, temp_addr))
strncpy(ns2->addrs + strlen(ns2->addrs), temp_addr, 17);
}
close((long) i);
free(conf.ifc_buf);
/*** end ip addr patch ***/
if (!first) {
/* calculate speeds */
ns->net_rec[0] = (ns->recv - last_recv) / delta;
ns->net_trans[0] = (ns->trans - last_trans) / delta;
}
curtmp1 = 0;
curtmp2 = 0;
// get an average
#ifdef HAVE_OPENMP
#pragma omp parallel for reduction(+:curtmp1, curtmp2) schedule(dynamic,10)
#endif /* HAVE_OPENMP */
for (i = 0; i < info.net_avg_samples; i++) {
curtmp1 = curtmp1 + ns->net_rec[i];
curtmp2 = curtmp2 + ns->net_trans[i];
}
ns->recv_speed = curtmp1 / (double) info.net_avg_samples;
ns->trans_speed = curtmp2 / (double) info.net_avg_samples;
if (info.net_avg_samples > 1) {
#ifdef HAVE_OPENMP
#pragma omp parallel for schedule(dynamic,10)
#endif /* HAVE_OPENMP */
for (i = info.net_avg_samples; i > 1; i--) {
ns->net_rec[i - 1] = ns->net_rec[i - 2];
ns->net_trans[i - 1] = ns->net_trans[i - 2];
}
}
#ifdef HAVE_IWLIB
/* update wireless info */
winfo = malloc(sizeof(struct wireless_info));
memset(winfo, 0, sizeof(struct wireless_info));
skfd = iw_sockets_open();
if (iw_get_basic_config(skfd, s, &(winfo->b)) > -1) {
// set present winfo variables
if (iw_get_stats(skfd, s, &(winfo->stats),
&winfo->range, winfo->has_range) >= 0) {
winfo->has_stats = 1;
}
if (iw_get_range_info(skfd, s, &(winfo->range)) >= 0) {
winfo->has_range = 1;
}
if (iw_get_ext(skfd, s, SIOCGIWAP, &wrq) >= 0) {
winfo->has_ap_addr = 1;
memcpy(&(winfo->ap_addr), &(wrq.u.ap_addr), sizeof(sockaddr));
}
// get bitrate
if (iw_get_ext(skfd, s, SIOCGIWRATE, &wrq) >= 0) {
memcpy(&(winfo->bitrate), &(wrq.u.bitrate), sizeof(iwparam));
iw_print_bitrate(ns->bitrate, 16, winfo->bitrate.value);
has_bitrate = 1;
}
// get link quality
if (winfo->has_range && winfo->has_stats
&& ((winfo->stats.qual.level != 0)
|| (winfo->stats.qual.updated & IW_QUAL_DBM))) {
if (!(winfo->stats.qual.updated & IW_QUAL_QUAL_INVALID)) {
ns->link_qual = winfo->stats.qual.qual;
ns->link_qual_max = winfo->range.max_qual.qual;
}
}
// get ap mac
if (winfo->has_ap_addr) {
iw_sawap_ntop(&winfo->ap_addr, ns->ap);
}
// get essid
if (winfo->b.has_essid) {
if (winfo->b.essid_on) {
snprintf(ns->essid, 32, "%s", winfo->b.essid);
} else {
snprintf(ns->essid, 32, "off/any");
}
}
snprintf(ns->mode, 16, "%s", iw_operation_mode[winfo->b.mode]);
}
iw_sockets_close(skfd);
free(winfo);
#endif
}
first = 0;
fclose(net_dev_fp);
}
int result;
void update_total_processes(void)
{
DIR *dir;
struct dirent *entry;
int ignore1;
char ignore2;
info.procs = 0;
if (!(dir = opendir("/proc"))) {
return;
}
while ((entry = readdir(dir))) {
if (!entry) {
/* Problem reading list of processes */
closedir(dir);
info.procs = 0;
return;
}
if (sscanf(entry->d_name, "%d%c", &ignore1, &ignore2) == 1) {
info.procs++;
}
}
closedir(dir);
}
void update_threads(void)
{
#ifdef HAVE_SYSINFO
if (!prefer_proc) {
struct sysinfo s_info;
sysinfo(&s_info);
info.threads = s_info.procs;
} else
#endif
{
static int rep = 0;
FILE *fp;
if (!(fp = open_file("/proc/loadavg", &rep))) {
info.threads = 0;
return;
}
fscanf(fp, "%*f %*f %*f %*d/%hu", &info.threads);
fclose(fp);
}
}
#define CPU_SAMPLE_COUNT 15
struct cpu_info {
unsigned long long cpu_user;
unsigned long long cpu_system;
unsigned long long cpu_nice;
unsigned long long cpu_idle;
unsigned long long cpu_iowait;
unsigned long long cpu_irq;
unsigned long long cpu_softirq;
unsigned long long cpu_steal;
unsigned long long cpu_total;
unsigned long long cpu_active_total;
unsigned long long cpu_last_total;
unsigned long long cpu_last_active_total;
double cpu_val[CPU_SAMPLE_COUNT];
};
static short cpu_setup = 0;
/* Determine if this kernel gives us "extended" statistics information in
* /proc/stat.
* Kernels around 2.5 and earlier only reported user, system, nice, and
* idle values in proc stat.
* Kernels around 2.6 and greater report these PLUS iowait, irq, softirq,
* and steal */
void determine_longstat(char *buf)
{
unsigned long long iowait = 0;
KFLAG_SETOFF(KFLAG_IS_LONGSTAT);
/* scanf will either return -1 or 1 because there is only 1 assignment */
if (sscanf(buf, "%*s %*d %*d %*d %*d %llu", &iowait) > 0) {
KFLAG_SETON(KFLAG_IS_LONGSTAT);
}
}
void get_cpu_count(void)
{
FILE *stat_fp;
static int rep = 0;
char buf[256];
if (info.cpu_usage) {
return;
}
if (!(stat_fp = open_file("/proc/stat", &rep))) {
return;
}
info.cpu_count = 0;
while (!feof(stat_fp)) {
if (fgets(buf, 255, stat_fp) == NULL) {
break;
}
if (strncmp(buf, "cpu", 3) == 0 && isdigit(buf[3])) {
if (info.cpu_count == 0) {
determine_longstat(buf);
}
info.cpu_count++;
}
}
info.cpu_usage = malloc((info.cpu_count + 1) * sizeof(float));
fclose(stat_fp);
}
#define TMPL_LONGSTAT "%*s %llu %llu %llu %llu %llu %llu %llu %llu"
#define TMPL_SHORTSTAT "%*s %llu %llu %llu %llu"
void update_stat(void)
{
FILE *stat_fp;
static int rep = 0;
static struct cpu_info *cpu = NULL;
char buf[256];
int i;
unsigned int idx;
double curtmp;
const char *stat_template = NULL;
unsigned int malloc_cpu_size = 0;
extern void* global_cpu;
static pthread_mutex_t last_stat_update_mutex = PTHREAD_MUTEX_INITIALIZER;
static double last_stat_update = 0.0;
/* since we use wrappers for this function, the update machinery
* can't eliminate double invocations of this function. Check for
* them here, otherwise cpu_usage counters are freaking out. */
pthread_mutex_lock(&last_stat_update_mutex);
if (last_stat_update == current_update_time) {
pthread_mutex_unlock(&last_stat_update_mutex);
return;
}
last_stat_update = current_update_time;
pthread_mutex_unlock(&last_stat_update_mutex);
/* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */
if (!cpu_setup || !info.cpu_usage) {
get_cpu_count();
cpu_setup = 1;
}
if (!stat_template) {
stat_template =
KFLAG_ISSET(KFLAG_IS_LONGSTAT) ? TMPL_LONGSTAT : TMPL_SHORTSTAT;
}
if (!global_cpu) {
malloc_cpu_size = (info.cpu_count + 1) * sizeof(struct cpu_info);
cpu = malloc(malloc_cpu_size);
memset(cpu, 0, malloc_cpu_size);
global_cpu = cpu;
}
if (!(stat_fp = open_file("/proc/stat", &rep))) {
info.run_threads = 0;
if (info.cpu_usage) {
memset(info.cpu_usage, 0, info.cpu_count * sizeof(float));
}
return;
}
idx = 0;
while (!feof(stat_fp)) {
if (fgets(buf, 255, stat_fp) == NULL) {
break;
}
if (strncmp(buf, "procs_running ", 14) == 0) {
sscanf(buf, "%*s %hu", &info.run_threads);
} else if (strncmp(buf, "cpu", 3) == 0) {
double delta;
if (isdigit(buf[3])) {
idx = atoi(&buf[3]) + 1;
} else {
idx = 0;
}
sscanf(buf, stat_template, &(cpu[idx].cpu_user),
&(cpu[idx].cpu_nice), &(cpu[idx].cpu_system),
&(cpu[idx].cpu_idle), &(cpu[idx].cpu_iowait),
&(cpu[idx].cpu_irq), &(cpu[idx].cpu_softirq),
&(cpu[idx].cpu_steal));
cpu[idx].cpu_total = cpu[idx].cpu_user + cpu[idx].cpu_nice +
cpu[idx].cpu_system + cpu[idx].cpu_idle +
cpu[idx].cpu_iowait + cpu[idx].cpu_irq +
cpu[idx].cpu_softirq + cpu[idx].cpu_steal;
cpu[idx].cpu_active_total = cpu[idx].cpu_total -
(cpu[idx].cpu_idle + cpu[idx].cpu_iowait);
delta = current_update_time - last_update_time;
if (delta <= 0.001) {
break;
}
cpu[idx].cpu_val[0] = (cpu[idx].cpu_active_total -
cpu[idx].cpu_last_active_total) /
(float) (cpu[idx].cpu_total - cpu[idx].cpu_last_total);
curtmp = 0;
#ifdef HAVE_OPENMP
#pragma omp parallel for reduction(+:curtmp) schedule(dynamic,10)
#endif /* HAVE_OPENMP */
for (i = 0; i < info.cpu_avg_samples; i++) {
curtmp = curtmp + cpu[idx].cpu_val[i];
}
/* TESTING -- I've removed this, because I don't think it is right.
* You shouldn't divide by the cpu count here ...
* removing for testing */
/* if (idx == 0) {
info.cpu_usage[idx] = curtmp / info.cpu_avg_samples /
info.cpu_count;
} else {
info.cpu_usage[idx] = curtmp / info.cpu_avg_samples;
} */
/* TESTING -- this line replaces the prev. "suspect" if/else */
info.cpu_usage[idx] = curtmp / info.cpu_avg_samples;
cpu[idx].cpu_last_total = cpu[idx].cpu_total;
cpu[idx].cpu_last_active_total = cpu[idx].cpu_active_total;
#ifdef HAVE_OPENMP
#pragma omp parallel for schedule(dynamic,10)
#endif /* HAVE_OPENMP */
for (i = info.cpu_avg_samples - 1; i > 0; i--) {
cpu[idx].cpu_val[i] = cpu[idx].cpu_val[i - 1];
}
}
}
fclose(stat_fp);
}
void update_running_processes(void)
{
update_stat();
}
void update_cpu_usage(void)
{
update_stat();
}
void update_load_average(void)
{
#ifdef HAVE_GETLOADAVG
if (!prefer_proc) {
double v[3];
getloadavg(v, 3);
info.loadavg[0] = (float) v[0];
info.loadavg[1] = (float) v[1];
info.loadavg[2] = (float) v[2];
} else
#endif
{
static int rep = 0;
FILE *fp;
if (!(fp = open_file("/proc/loadavg", &rep))) {
info.loadavg[0] = info.loadavg[1] = info.loadavg[2] = 0.0;
return;
}
fscanf(fp, "%f %f %f", &info.loadavg[0], &info.loadavg[1],
&info.loadavg[2]);
fclose(fp);
}
}
/***********************************************************/
/***********************************************************/
/***********************************************************/
static int no_dots(const struct dirent *d)
{
if (d->d_name[0] == '.') {
return 0;
}
return 1;
}
static int get_first_file_in_a_directory(const char *dir, char *s, int *rep)
{
struct dirent **namelist;
int i, n;
n = scandir(dir, &namelist, no_dots, alphasort);
if (n < 0) {
if (!rep || !*rep) {
NORM_ERR("scandir for %s: %s", dir, strerror(errno));
if (rep) {
*rep = 1;
}
}
return 0;
} else {
if (n == 0) {
return 0;
}
strncpy(s, namelist[0]->d_name, 255);
s[255] = '\0';
#ifdef HAVE_OPENMP
#pragma omp parallel for schedule(dynamic,10)
#endif /* HAVE_OPENMP */
for (i = 0; i < n; i++) {
free(namelist[i]);
}
free(namelist);
return 1;
}
}
static int open_sysfs_sensor(const char *dir, const char *dev, const char *type, int n,
int *divisor, char *devtype)
{
char path[256];
char buf[256];
int fd;
int divfd;
memset(buf, 0, sizeof(buf));
/* if device is NULL or *, get first */
if (dev == NULL || strcmp(dev, "*") == 0) {
static int rep = 0;
if (!get_first_file_in_a_directory(dir, buf, &rep)) {
return -1;
}
dev = buf;
}
if (strcmp(dir, "/sys/class/hwmon/") == 0) {
if (*buf) {
/* buf holds result from get_first_file_in_a_directory() above,
* e.g. "hwmon0" -- append "/device" */
strcat(buf, "/device");
} else {
/* dev holds device number N as a string,
* e.g. "0", -- convert to "hwmon0/device" */
sprintf(buf, "hwmon%s/device", dev);
dev = buf;
}
}
/* change vol to in, tempf to temp */
if (strcmp(type, "vol") == 0) {
type = "in";
} else if (strcmp(type, "tempf") == 0) {
type = "temp";
}
/* construct path */
snprintf(path, 255, "%s%s/%s%d_input", dir, dev, type, n);
/* first, attempt to open file in /device */
fd = open(path, O_RDONLY);
if (fd < 0) {
/* if it fails, strip the /device from dev and attempt again */
buf[strlen(buf) - 7] = 0;
snprintf(path, 255, "%s%s/%s%d_input", dir, dev, type, n);
fd = open(path, O_RDONLY);
if (fd < 0) {
CRIT_ERR(NULL, NULL, "can't open '%s': %s\nplease check your device or remove this "
"var from "PACKAGE_NAME, path, strerror(errno));
}
}
strncpy(devtype, path, 255);
if (strcmp(type, "in") == 0 || strcmp(type, "temp") == 0
|| strcmp(type, "tempf") == 0) {
*divisor = 1;
} else {
*divisor = 0;
}
/* fan does not use *_div as a read divisor */
if (strcmp("fan", type) == 0) {
return fd;
}
/* test if *_div file exist, open it and use it as divisor */
if (strcmp(type, "tempf") == 0) {
snprintf(path, 255, "%s%s/%s%d_div", dir, "one", "two", n);
} else {
snprintf(path, 255, "%s%s/%s%d_div", dir, dev, type, n);
}
divfd = open(path, O_RDONLY);
if (divfd > 0) {
/* read integer */
char divbuf[64];
int divn;
divn = read(divfd, divbuf, 63);
/* should read until n == 0 but I doubt that kernel will give these
* in multiple pieces. :) */
if (divn < 0) {
NORM_ERR("open_sysfs_sensor(): can't read from sysfs");
} else {
divbuf[divn] = '\0';
*divisor = atoi(divbuf);
}
close(divfd);
}
return fd;
}
static double get_sysfs_info(int *fd, int divisor, char *devtype, char *type)
{
int val = 0;
if (*fd <= 0) {
return 0;
}
lseek(*fd, 0, SEEK_SET);
/* read integer */
{
char buf[64];
int n;
n = read(*fd, buf, 63);
/* should read until n == 0 but I doubt that kernel will give these
* in multiple pieces. :) */
if (n < 0) {
NORM_ERR("get_sysfs_info(): read from %s failed\n", devtype);
} else {
buf[n] = '\0';
val = atoi(buf);
}
}
close(*fd);
/* open file */
*fd = open(devtype, O_RDONLY);
if (*fd < 0) {
NORM_ERR("can't open '%s': %s", devtype, strerror(errno));
}
/* My dirty hack for computing CPU value
* Filedil, from forums.gentoo.org */
/* if (strstr(devtype, "temp1_input") != NULL) {
return -15.096 + 1.4893 * (val / 1000.0);
} */
/* divide voltage and temperature by 1000 */
/* or if any other divisor is given, use that */
if (strcmp(type, "tempf") == 0) {
if (divisor > 1) {
return ((val / divisor + 40) * 9.0 / 5) - 40;
} else if (divisor) {
return ((val / 1000.0 + 40) * 9.0 / 5) - 40;
} else {
return ((val + 40) * 9.0 / 5) - 40;
}
} else {
if (divisor > 1) {
return val / divisor;
} else if (divisor) {
return val / 1000.0;
} else {
return val;
}
}
}
#define HWMON_RESET() {\
buf1[0] = 0; \
factor = 1.0; \
offset = 0.0; }
static void parse_sysfs_sensor(struct text_object *obj, const char *arg, const char *path, const char *type)
{
char buf1[64], buf2[64];
float factor, offset;
int n, found = 0;
struct sysfs *sf;
if (sscanf(arg, "%63s %d %f %f", buf2, &n, &factor, &offset) == 4) found = 1; else HWMON_RESET();
if (!found && sscanf(arg, "%63s %63s %d %f %f", buf1, buf2, &n, &factor, &offset) == 5) found = 1; else if (!found) HWMON_RESET();
if (!found && sscanf(arg, "%63s %63s %d", buf1, buf2, &n) == 3) found = 1; else if (!found) HWMON_RESET();
if (!found && sscanf(arg, "%63s %d", buf2, &n) == 2) found = 1; else if (!found) HWMON_RESET();
if (!found) {
NORM_ERR("i2c failed to parse arguments");
obj->type = OBJ_text;
return;
}
DBGP("parsed %s args: '%s' '%s' %d %f %f\n", type, buf1, buf2, n, factor, offset);
sf = malloc(sizeof(struct sysfs));
memset(sf, 0, sizeof(struct sysfs));
sf->fd = open_sysfs_sensor(path, (*buf1) ? buf1 : 0, buf2, n,
&sf->arg, sf->devtype);
strncpy(sf->type, buf2, 63);
sf->factor = factor;
sf->offset = offset;
obj->data.opaque = sf;
}
#define PARSER_GENERATOR(name, path) \
void parse_##name##_sensor(struct text_object *obj, const char *arg) \
{ \
parse_sysfs_sensor(obj, arg, path, #name); \
}
PARSER_GENERATOR(i2c, "/sys/bus/i2c/devices/")
PARSER_GENERATOR(hwmon, "/sys/class/hwmon/")
PARSER_GENERATOR(platform, "/sys/bus/platform/devices/")
void print_sysfs_sensor(struct text_object *obj, char *p, int p_max_size)
{
double r;
struct sysfs *sf = obj->data.opaque;
if (!sf)
return;
r = get_sysfs_info(&sf->fd, sf->arg,
sf->devtype, sf->type);
r = r * sf->factor + sf->offset;
if (!strncmp(sf->type, "temp", 4)) {
temp_print(p, p_max_size, r, TEMP_CELSIUS);
} else if (r >= 100.0 || r == 0) {
snprintf(p, p_max_size, "%d", (int) r);
} else {
snprintf(p, p_max_size, "%.1f", r);
}
}
void free_sysfs_sensor(struct text_object *obj)
{
struct sysfs *sf = obj->data.opaque;
if (!sf)
return;
close(sf->fd);
free(obj->data.opaque);
obj->data.opaque = NULL;
}
#define CPUFREQ_PREFIX "/sys/devices/system/cpu"
#define CPUFREQ_POSTFIX "cpufreq/scaling_cur_freq"
/* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
char get_freq(char *p_client_buffer, size_t client_buffer_size,
const char *p_format, int divisor, unsigned int cpu)
{
FILE *f;
static int rep = 0;
char frequency[32];
char s[256];
double freq = 0;
if (!p_client_buffer || client_buffer_size <= 0 || !p_format
|| divisor <= 0) {
return 0;
}
if (!prefer_proc) {
char current_freq_file[128];
snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu - 1,
CPUFREQ_POSTFIX);
f = fopen(current_freq_file, "r");
if (f) {
/* if there's a cpufreq /sys node, read the current frequency from
* this node and divide by 1000 to get Mhz. */
if (fgets(s, sizeof(s), f)) {
s[strlen(s) - 1] = '\0';
freq = strtod(s, NULL);
}
fclose(f);
snprintf(p_client_buffer, client_buffer_size, p_format,
(freq / 1000) / divisor);
return 1;
}
}
// open the CPU information file
f = open_file("/proc/cpuinfo", &rep);
if (!f) {
perror(PACKAGE_NAME": Failed to access '/proc/cpuinfo' at get_freq()");
return 0;
}
// read the file
while (fgets(s, sizeof(s), f) != NULL) {
#if defined(__i386) || defined(__x86_64)
// and search for the cpu mhz
if (strncmp(s, "cpu MHz", 7) == 0 && cpu == 0) {
#else
#if defined(__alpha)
// different on alpha
if (strncmp(s, "cycle frequency [Hz]", 20) == 0 && cpu == 0) {
#else
// this is different on ppc for some reason
if (strncmp(s, "clock", 5) == 0 && cpu == 0) {
#endif // defined(__alpha)
#endif // defined(__i386) || defined(__x86_64)
// copy just the number
strcpy(frequency, strchr(s, ':') + 2);
#if defined(__alpha)
// strip " est.\n"
frequency[strlen(frequency) - 6] = '\0';
// kernel reports in Hz
freq = strtod(frequency, NULL) / 1000000;
#else
// strip \n
frequency[strlen(frequency) - 1] = '\0';
freq = strtod(frequency, NULL);
#endif
break;
}
if (strncmp(s, "processor", 9) == 0) {
cpu--;
continue;
}
}
fclose(f);
snprintf(p_client_buffer, client_buffer_size, p_format,
(float) freq / divisor);
return 1;
}
#define CPUFREQ_VOLTAGE "cpufreq/scaling_voltages"
/* /sys/devices/system/cpu/cpu0/cpufreq/scaling_voltages looks something
* like this:
# frequency voltage
1800000 1340
1600000 1292
1400000 1100
1200000 988
1000000 1116
800000 1004
600000 988
* Peter Tarjan (ptarjan@citromail.hu) */
/* return cpu voltage in mV (use divisor=1) or V (use divisor=1000) */
static char get_voltage(char *p_client_buffer, size_t client_buffer_size,
const char *p_format, int divisor, unsigned int cpu)
{
FILE *f;
char s[256];
int freq = 0;
int voltage = 0;
char current_freq_file[128];
int freq_comp = 0;
/* build the voltage file name */
cpu--;
snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu,
CPUFREQ_POSTFIX);
if (!p_client_buffer || client_buffer_size <= 0 || !p_format
|| divisor <= 0) {
return 0;
}
/* read the current cpu frequency from the /sys node */
f = fopen(current_freq_file, "r");
if (f) {
if (fgets(s, sizeof(s), f)) {
s[strlen(s) - 1] = '\0';
freq = strtod(s, NULL);
}
fclose(f);
} else {
fprintf(stderr, PACKAGE_NAME": Failed to access '%s' at ", current_freq_file);
perror("get_voltage()");
if (f) {
fclose(f);
}
return 0;
}
snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu,
CPUFREQ_VOLTAGE);
/* use the current cpu frequency to find the corresponding voltage */
f = fopen(current_freq_file, "r");
if (f) {
while (!feof(f)) {
char line[256];
if (fgets(line, 255, f) == NULL) {
break;
}
sscanf(line, "%d %d", &freq_comp, &voltage);
if (freq_comp == freq) {
break;
}
}
fclose(f);
} else {
fprintf(stderr, PACKAGE_NAME": Failed to access '%s' at ", current_freq_file);
perror("get_voltage()");
if (f) {
fclose(f);
}
return 0;
}
snprintf(p_client_buffer, client_buffer_size, p_format,
(float) voltage / divisor);
return 1;
}
void print_voltage_mv(struct text_object *obj, char *p, int p_max_size)
{
static int ok = 1;
if (ok) {
ok = get_voltage(p, p_max_size, "%.0f", 1, obj->data.i);
}
}
void print_voltage_v(struct text_object *obj, char *p, int p_max_size)
{
static int ok = 1;
if (ok) {
ok = get_voltage(p, p_max_size, "%'.3f", 1000, obj->data.i);
}
}
#define ACPI_FAN_DIR "/proc/acpi/fan/"
void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size)
{
static int rep = 0;
char buf[256];
char buf2[256];
FILE *fp;
if (!p_client_buffer || client_buffer_size <= 0) {
return;
}
/* yeah, slow... :/ */
if (!get_first_file_in_a_directory(ACPI_FAN_DIR, buf, &rep)) {
snprintf(p_client_buffer, client_buffer_size, "no fans?");
return;
}
snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_FAN_DIR, buf);
fp = open_file(buf2, &rep);
if (!fp) {
snprintf(p_client_buffer, client_buffer_size,
"can't open fan's state file");
return;
}
memset(buf, 0, sizeof(buf));
fscanf(fp, "%*s %99s", buf);
fclose(fp);
snprintf(p_client_buffer, client_buffer_size, "%s", buf);
}
#define SYSFS_AC_ADAPTER_DIR "/sys/class/power_supply"
#define ACPI_AC_ADAPTER_DIR "/proc/acpi/ac_adapter/"
/* Linux 2.6.25 onwards ac adapter info is in
/sys/class/power_supply/AC/
On my system I get the following.
/sys/class/power_supply/AC/uevent:
PHYSDEVPATH=/devices/LNXSYSTM:00/device:00/PNP0A08:00/device:01/PNP0C09:00/ACPI0003:00
PHYSDEVBUS=acpi
PHYSDEVDRIVER=ac
POWER_SUPPLY_NAME=AC
POWER_SUPPLY_TYPE=Mains
POWER_SUPPLY_ONLINE=1
Update: it seems the folder name is hardware-dependent. We add an aditional adapter
argument, specifying the folder name.
Update: on some systems it's /sys/class/power_supply/ADP1 instead of /sys/class/power_supply/AC
*/
void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size, const char *adapter)
{
static int rep = 0;
char buf[256];
char buf2[256];
struct stat sb;
FILE *fp;
if (!p_client_buffer || client_buffer_size <= 0) {
return;
}
if(adapter)
snprintf(buf2, sizeof(buf2), "%s/%s/uevent", SYSFS_AC_ADAPTER_DIR, adapter);
else{
snprintf(buf2, sizeof(buf2), "%s/AC/uevent", SYSFS_AC_ADAPTER_DIR);
if(stat(buf2, &sb) == -1) snprintf(buf2, sizeof(buf2), "%s/ADP1/uevent", SYSFS_AC_ADAPTER_DIR);
}
if(stat(buf2, &sb) == 0) fp = open_file(buf2, &rep); else fp = 0;
if (fp) {
/* sysfs processing */
while (!feof(fp)) {
if (fgets(buf, sizeof(buf), fp) == NULL)
break;
if (strncmp(buf, "POWER_SUPPLY_ONLINE=", 20) == 0) {
int online = 0;
sscanf(buf, "POWER_SUPPLY_ONLINE=%d", &online);
snprintf(p_client_buffer, client_buffer_size,
"%s-line", (online ? "on" : "off"));
break;
}
}
fclose(fp);
} else {
/* yeah, slow... :/ */
if (!get_first_file_in_a_directory(ACPI_AC_ADAPTER_DIR, buf, &rep)) {
snprintf(p_client_buffer, client_buffer_size, "no ac_adapters?");
return;
}
snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_AC_ADAPTER_DIR, buf);
fp = open_file(buf2, &rep);
if (!fp) {
snprintf(p_client_buffer, client_buffer_size,
"No ac adapter found.... where is it?");
return;
}
memset(buf, 0, sizeof(buf));
fscanf(fp, "%*s %99s", buf);
fclose(fp);
snprintf(p_client_buffer, client_buffer_size, "%s", buf);
}
}
/*
/proc/acpi/thermal_zone/THRM/cooling_mode
cooling mode: active
/proc/acpi/thermal_zone/THRM/polling_frequency
/proc/acpi/thermal_zone/THRM/state
state: ok
/proc/acpi/thermal_zone/THRM/temperature
temperature: 45 C
/proc/acpi/thermal_zone/THRM/trip_points
critical (S5): 73 C
passive: 73 C: tc1=4 tc2=3 tsp=40 devices=0xcdf6e6c0
*/
#define ACPI_THERMAL_DIR "/proc/acpi/thermal_zone/"
#define ACPI_THERMAL_FORMAT "/proc/acpi/thermal_zone/%s/temperature"
int open_acpi_temperature(const char *name)
{
char path[256];
char buf[256];
int fd;
if (name == NULL || strcmp(name, "*") == 0) {
static int rep = 0;
if (!get_first_file_in_a_directory(ACPI_THERMAL_DIR, buf, &rep)) {
return -1;
}
name = buf;
}
snprintf(path, 255, ACPI_THERMAL_FORMAT, name);
fd = open(path, O_RDONLY);
if (fd < 0) {
NORM_ERR("can't open '%s': %s", path, strerror(errno));
}
return fd;
}
static double last_acpi_temp;
static double last_acpi_temp_time;
double get_acpi_temperature(int fd)
{
if (fd <= 0) {
return 0;
}
/* don't update acpi temperature too often */
if (current_update_time - last_acpi_temp_time < 11.32) {
return last_acpi_temp;
}
last_acpi_temp_time = current_update_time;
/* seek to beginning */
lseek(fd, 0, SEEK_SET);
/* read */
{
char buf[256];
int n;
n = read(fd, buf, 255);
if (n < 0) {
NORM_ERR("can't read fd %d: %s", fd, strerror(errno));
} else {
buf[n] = '\0';
sscanf(buf, "temperature: %lf", &last_acpi_temp);
}
}
return last_acpi_temp;
}
/*
hipo@lepakko hipo $ cat /proc/acpi/battery/BAT1/info
present: yes
design capacity: 4400 mAh
last full capacity: 4064 mAh
battery technology: rechargeable
design voltage: 14800 mV
design capacity warning: 300 mAh
design capacity low: 200 mAh
capacity granularity 1: 32 mAh
capacity granularity 2: 32 mAh
model number: 02KT
serial number: 16922
battery type: LION
OEM info: SANYO
*/
/*
hipo@lepakko conky $ cat /proc/acpi/battery/BAT1/state
present: yes
capacity state: ok
charging state: unknown
present rate: 0 mA
remaining capacity: 4064 mAh
present voltage: 16608 mV
*/
/*
2213<@jupet�kellari��> jupet@lagi-unstable:~$ cat /proc/apm
2213<@jupet�kellari��> 1.16 1.2 0x03 0x01 0xff 0x10 -1% -1 ?
2213<@jupet�kellari��> (-1 ollee ei akkua kiinni, koska akku on p�yd�ll�)
2214<@jupet�kellari��> jupet@lagi-unstable:~$ cat /proc/apm
2214<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x03 0x09 98% -1 ?
2238<@jupet�kellari��> 1.16 1.2 0x03 0x00 0x00 0x01 100% -1 ? ilman verkkovirtaa
2239<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x00 0x01 99% -1 ? verkkovirralla
2240<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x03 0x09 100% -1 ? verkkovirralla ja monitori p��ll�
2241<@jupet�kellari��> 1.16 1.2 0x03 0x00 0x00 0x01 99% -1 ? monitori p��ll� mutta ilman verkkovirtaa
*/
/* Kapil Hari Paranjape
Linux 2.6.24 onwards battery info is in
/sys/class/power_supply/BAT0/
On my system I get the following.
/sys/class/power_supply/BAT0/uevent:
PHYSDEVPATH=/devices/LNXSYSTM:00/device:00/PNP0A03:00/device:01/PNP0C09:00/PNP0C0A:00
PHYSDEVBUS=acpi
PHYSDEVDRIVER=battery
POWER_SUPPLY_NAME=BAT0
POWER_SUPPLY_TYPE=Battery
POWER_SUPPLY_STATUS=Discharging
POWER_SUPPLY_PRESENT=1
POWER_SUPPLY_TECHNOLOGY=Li-ion
POWER_SUPPLY_VOLTAGE_MIN_DESIGN=10800000
POWER_SUPPLY_VOLTAGE_NOW=10780000
POWER_SUPPLY_CURRENT_NOW=13970000
POWER_SUPPLY_ENERGY_FULL_DESIGN=47510000
POWER_SUPPLY_ENERGY_FULL=27370000
POWER_SUPPLY_ENERGY_NOW=11810000
POWER_SUPPLY_MODEL_NAME=IBM-92P1060
POWER_SUPPLY_MANUFACTURER=Panasonic
On some systems POWER_SUPPLY_ENERGY_* is replaced by POWER_SUPPLY_CHARGE_*
*/
#define SYSFS_BATTERY_BASE_PATH "/sys/class/power_supply"
#define ACPI_BATTERY_BASE_PATH "/proc/acpi/battery"
#define APM_PATH "/proc/apm"
#define MAX_BATTERY_COUNT 4
static FILE *sysfs_bat_fp[MAX_BATTERY_COUNT] = { NULL, NULL, NULL, NULL };
static FILE *acpi_bat_fp[MAX_BATTERY_COUNT] = { NULL, NULL, NULL, NULL };
static FILE *apm_bat_fp[MAX_BATTERY_COUNT] = { NULL, NULL, NULL, NULL };
static int batteries_initialized = 0;
static char batteries[MAX_BATTERY_COUNT][32];
static int acpi_last_full[MAX_BATTERY_COUNT];
static int acpi_design_capacity[MAX_BATTERY_COUNT];
/* e.g. "charging 75%" */
static char last_battery_str[MAX_BATTERY_COUNT][64];
/* e.g. "3h 15m" */
static char last_battery_time_str[MAX_BATTERY_COUNT][64];
static double last_battery_time[MAX_BATTERY_COUNT];
static int last_battery_perct[MAX_BATTERY_COUNT];
static double last_battery_perct_time[MAX_BATTERY_COUNT];
void init_batteries(void)
{
int idx;
if (batteries_initialized) {
return;
}
#ifdef HAVE_OPENMP
#pragma omp parallel for schedule(dynamic,10)
#endif /* HAVE_OPENMP */
for (idx = 0; idx < MAX_BATTERY_COUNT; idx++) {
batteries[idx][0] = '\0';
}
batteries_initialized = 1;
}
int get_battery_idx(const char *bat)
{
int idx;
for (idx = 0; idx < MAX_BATTERY_COUNT; idx++) {
if (!strlen(batteries[idx]) || !strcmp(batteries[idx], bat)) {
break;
}
}
/* if not found, enter a new entry */
if (!strlen(batteries[idx])) {
snprintf(batteries[idx], 31, "%s", bat);
}
return idx;
}
void set_return_value(char *buffer, unsigned int n, int item, int idx);
void get_battery_stuff(char *buffer, unsigned int n, const char *bat, int item)
{
static int idx, rep = 0, rep1 = 0, rep2 = 0;
char acpi_path[128];
char sysfs_path[128];
snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat);
snprintf(sysfs_path, 127, SYSFS_BATTERY_BASE_PATH "/%s/uevent", bat);
init_batteries();
idx = get_battery_idx(bat);
/* don't update battery too often */
if (current_update_time - last_battery_time[idx] < 29.5) {
set_return_value(buffer, n, item, idx);
return;
}
last_battery_time[idx] = current_update_time;
memset(last_battery_str[idx], 0, sizeof(last_battery_str[idx]));
memset(last_battery_time_str[idx], 0, sizeof(last_battery_time_str[idx]));
/* first try SYSFS if that fails try ACPI */
if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) {
sysfs_bat_fp[idx] = open_file(sysfs_path, &rep);
}
if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) {
acpi_bat_fp[idx] = open_file(acpi_path, &rep1);
}
if (sysfs_bat_fp[idx] != NULL) {
/* SYSFS */
int present_rate = -1;
int remaining_capacity = -1;
char charging_state[64];
char present[4];
strcpy(charging_state, "unknown");
while (!feof(sysfs_bat_fp[idx])) {
char buf[256];
if (fgets(buf, 256, sysfs_bat_fp[idx]) == NULL)
break;
/* let's just hope units are ok */
if (strncmp (buf, "POWER_SUPPLY_PRESENT=1", 22) == 0)
strcpy(present, "yes");
else if (strncmp (buf, "POWER_SUPPLY_PRESENT=0", 22) == 0)
strcpy(present, "no");
else if (strncmp (buf, "POWER_SUPPLY_STATUS=", 20) == 0)
sscanf(buf, "POWER_SUPPLY_STATUS=%63s", charging_state);
/* present_rate is not the same as the
current flowing now but it is the same value
which was used in the past. so we continue
the tradition! */
else if (strncmp(buf, "POWER_SUPPLY_CURRENT_NOW=", 25) == 0)
sscanf(buf, "POWER_SUPPLY_CURRENT_NOW=%d", &present_rate);
else if (strncmp(buf, "POWER_SUPPLY_ENERGY_NOW=", 24) == 0)
sscanf(buf, "POWER_SUPPLY_ENERGY_NOW=%d", &remaining_capacity);
else if (strncmp(buf, "POWER_SUPPLY_ENERGY_FULL=", 25) == 0)
sscanf(buf, "POWER_SUPPLY_ENERGY_FULL=%d", &acpi_last_full[idx]);
else if (strncmp(buf, "POWER_SUPPLY_CHARGE_NOW=", 24) == 0)
sscanf(buf, "POWER_SUPPLY_CHARGE_NOW=%d", &remaining_capacity);
else if (strncmp(buf, "POWER_SUPPLY_CHARGE_FULL=", 25) == 0)
sscanf(buf, "POWER_SUPPLY_CHARGE_FULL=%d", &acpi_last_full[idx]);
}
fclose(sysfs_bat_fp[idx]);
sysfs_bat_fp[idx] = NULL;
/* Hellf[i]re notes that remaining capacity can exceed acpi_last_full */
if (remaining_capacity > acpi_last_full[idx])
acpi_last_full[idx] = remaining_capacity; /* normalize to 100% */
/* not present */
if (strcmp(present, "No") == 0) {
strncpy(last_battery_str[idx], "not present", 64);
}
/* charging */
else if (strcmp(charging_state, "Charging") == 0) {
if (acpi_last_full[idx] != 0 && present_rate > 0) {
/* e.g. charging 75% */
snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "charging %i%%",
(int) (((float) remaining_capacity / acpi_last_full[idx]) * 100 ));
/* e.g. 2h 37m */
format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx])-1,
(long) (((float)(acpi_last_full[idx] - remaining_capacity) / present_rate) * 3600));
} else if (acpi_last_full[idx] != 0 && present_rate <= 0) {
snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "charging %d%%",
(int) (((float)remaining_capacity / acpi_last_full[idx]) * 100));
snprintf(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1, "unknown");
} else {
strncpy(last_battery_str[idx], "charging", sizeof(last_battery_str[idx])-1);
snprintf(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1, "unknown");
}
}
/* discharging */
else if (strncmp(charging_state, "Discharging", 64) == 0) {
if (present_rate > 0) {
/* e.g. discharging 35% */
snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "discharging %i%%",
(int) (((float) remaining_capacity / acpi_last_full[idx]) * 100 ));
/* e.g. 1h 12m */
format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx])-1,
(long) (((float) remaining_capacity / present_rate) * 3600));
} else if (present_rate == 0) { /* Thanks to Nexox for this one */
snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "full");
snprintf(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1, "unknown");
} else {
snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1,
"discharging %d%%",
(int) (((float)remaining_capacity / acpi_last_full[idx]) * 100));
snprintf(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1, "unknown");
}
}
/* charged */
/* thanks to Lukas Zapletal */
else if (strncmp(charging_state, "Charged", 64) == 0 || strncmp(charging_state, "Full", 64) == 0) {
/* Below happens with the second battery on my X40,
* when the second one is empty and the first one
* being charged. */
if (remaining_capacity == 0)
strcpy(last_battery_str[idx], "empty");
else
strcpy(last_battery_str[idx], "charged");
}
/* unknown, probably full / AC */
else {
if (acpi_last_full[idx] != 0
&& remaining_capacity != acpi_last_full[idx])
snprintf(last_battery_str[idx], 64, "unknown %d%%",
(int) (((float)remaining_capacity / acpi_last_full[idx]) * 100));
else
strncpy(last_battery_str[idx], "AC", 64);
}
} else if (acpi_bat_fp[idx] != NULL) {
/* ACPI */
int present_rate = -1;
int remaining_capacity = -1;
char charging_state[64];
char present[4];
/* read last full capacity if it's zero */
if (acpi_last_full[idx] == 0) {
static int rep3 = 0;
char path[128];
FILE *fp;
snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat);
fp = open_file(path, &rep3);
if (fp != NULL) {
while (!feof(fp)) {
char b[256];
if (fgets(b, 256, fp) == NULL) {
break;
}
if (sscanf(b, "last full capacity: %d",
&acpi_last_full[idx]) != 0) {
break;
}
}
fclose(fp);
}
}
fseek(acpi_bat_fp[idx], 0, SEEK_SET);
strcpy(charging_state, "unknown");
while (!feof(acpi_bat_fp[idx])) {
char buf[256];
if (fgets(buf, 256, acpi_bat_fp[idx]) == NULL) {
break;
}
/* let's just hope units are ok */
if (strncmp(buf, "present:", 8) == 0) {
sscanf(buf, "present: %4s", present);
} else if (strncmp(buf, "charging state:", 15) == 0) {
sscanf(buf, "charging state: %63s", charging_state);
} else if (strncmp(buf, "present rate:", 13) == 0) {
sscanf(buf, "present rate: %d", &present_rate);
} else if (strncmp(buf, "remaining capacity:", 19) == 0) {
sscanf(buf, "remaining capacity: %d", &remaining_capacity);
}
}
/* Hellf[i]re notes that remaining capacity can exceed acpi_last_full */
if (remaining_capacity > acpi_last_full[idx]) {
/* normalize to 100% */
acpi_last_full[idx] = remaining_capacity;
}
/* not present */
if (strcmp(present, "no") == 0) {
strncpy(last_battery_str[idx], "not present", 64);
/* charging */
} else if (strcmp(charging_state, "charging") == 0) {
if (acpi_last_full[idx] != 0 && present_rate > 0) {
/* e.g. charging 75% */
snprintf(last_battery_str[idx],
sizeof(last_battery_str[idx]) - 1, "charging %i%%",
(int) ((remaining_capacity * 100) / acpi_last_full[idx]));
/* e.g. 2h 37m */
format_seconds(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1,
(long) (((acpi_last_full[idx] - remaining_capacity) *
3600) / present_rate));
} else if (acpi_last_full[idx] != 0 && present_rate <= 0) {
snprintf(last_battery_str[idx],
sizeof(last_battery_str[idx]) - 1, "charging %d%%",
(int) ((remaining_capacity * 100) / acpi_last_full[idx]));
snprintf(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1, "unknown");
} else {
strncpy(last_battery_str[idx], "charging",
sizeof(last_battery_str[idx]) - 1);
snprintf(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1, "unknown");
}
/* discharging */
} else if (strncmp(charging_state, "discharging", 64) == 0) {
if (present_rate > 0) {
/* e.g. discharging 35% */
snprintf(last_battery_str[idx],
sizeof(last_battery_str[idx]) - 1, "discharging %i%%",
(int) ((remaining_capacity * 100) / acpi_last_full[idx]));
/* e.g. 1h 12m */
format_seconds(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1,
(long) ((remaining_capacity * 3600) / present_rate));
} else if (present_rate == 0) { /* Thanks to Nexox for this one */
snprintf(last_battery_str[idx],
sizeof(last_battery_str[idx]) - 1, "full");
snprintf(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1, "unknown");
} else {
snprintf(last_battery_str[idx],
sizeof(last_battery_str[idx]) - 1, "discharging %d%%",
(int) ((remaining_capacity * 100) / acpi_last_full[idx]));
snprintf(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1, "unknown");
}
/* charged */
} else if (strncmp(charging_state, "charged", 64) == 0) {
/* thanks to Lukas Zapletal */
/* Below happens with the second battery on my X40,
* when the second one is empty and the first one being charged. */
if (remaining_capacity == 0) {
strcpy(last_battery_str[idx], "empty");
} else {
strcpy(last_battery_str[idx], "charged");
}
/* unknown, probably full / AC */
} else {
if (strncmp(charging_state, "Full", 64) == 0) {
strncpy(last_battery_str[idx], "full", 64);
} else if (acpi_last_full[idx] != 0
&& remaining_capacity != acpi_last_full[idx]) {
snprintf(last_battery_str[idx], 64, "unknown %d%%",
(int) ((remaining_capacity * 100) / acpi_last_full[idx]));
} else {
strncpy(last_battery_str[idx], "AC", 64);
}
}
fclose(acpi_bat_fp[idx]);
acpi_bat_fp[idx] = NULL;
} else {
/* APM */
if (apm_bat_fp[idx] == NULL) {
apm_bat_fp[idx] = open_file(APM_PATH, &rep2);
}
if (apm_bat_fp[idx] != NULL) {
unsigned int ac, status, flag;
int life;
fscanf(apm_bat_fp[idx], "%*s %*s %*x %x %x %x %d%%",
&ac, &status, &flag, &life);
if (life == -1) {
/* could check now that there is ac */
snprintf(last_battery_str[idx], 64, "AC");
/* could check that status == 3 here? */
} else if (ac && life != 100) {
snprintf(last_battery_str[idx], 64, "charging %d%%", life);
} else {
snprintf(last_battery_str[idx], 64, "%d%%", life);
}
/* it seemed to buffer it so file must be closed (or could use
* syscalls directly but I don't feel like coding it now) */
fclose(apm_bat_fp[idx]);
apm_bat_fp[idx] = NULL;
}
}
set_return_value(buffer, n, item, idx);
}
void set_return_value(char *buffer, unsigned int n, int item, int idx)
{
switch (item) {
case BATTERY_STATUS:
snprintf(buffer, n, "%s", last_battery_str[idx]);
break;
case BATTERY_TIME:
snprintf(buffer, n, "%s", last_battery_time_str[idx]);
break;
default:
break;
}
}
void get_battery_short_status(char *buffer, unsigned int n, const char *bat)
{
get_battery_stuff(buffer, n, bat, BATTERY_STATUS);
if (0 == strncmp("charging", buffer, 8)) {
buffer[0] = 'C';
memmove(buffer + 1, buffer + 8, n - 8);
} else if (0 == strncmp("discharging", buffer, 11)) {
buffer[0] = 'D';
memmove(buffer + 1, buffer + 11, n - 11);
} else if (0 == strncmp("charged", buffer, 7)) {
buffer[0] = 'F';
memmove(buffer + 1, buffer + 7, n - 7);
} else if (0 == strncmp("not present", buffer, 11)) {
buffer[0] = 'N';
memmove(buffer + 1, buffer + 11, n - 11);
} else if (0 == strncmp("empty", buffer, 5)) {
buffer[0] = 'E';
memmove(buffer + 1, buffer + 5, n - 5);
} else if (0 != strncmp("AC", buffer, 2)) {
buffer[0] = 'U';
memmove(buffer + 1, buffer + 11, n - 11);
}
}
int get_battery_perct(const char *bat)
{
static int rep = 0;
int idx;
char acpi_path[128];
char sysfs_path[128];
int remaining_capacity = -1;
snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat);
snprintf(sysfs_path, 127, SYSFS_BATTERY_BASE_PATH "/%s/uevent", bat);
init_batteries();
idx = get_battery_idx(bat);
/* don't update battery too often */
if (current_update_time - last_battery_perct_time[idx] < 30) {
return last_battery_perct[idx];
}
last_battery_perct_time[idx] = current_update_time;
/* Only check for SYSFS or ACPI */
if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) {
sysfs_bat_fp[idx] = open_file(sysfs_path, &rep);
rep = 0;
}
if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) {
acpi_bat_fp[idx] = open_file(acpi_path, &rep);
}
if (sysfs_bat_fp[idx] != NULL) {
/* SYSFS */
while (!feof(sysfs_bat_fp[idx])) {
char buf[256];
if (fgets(buf, 256, sysfs_bat_fp[idx]) == NULL)
break;
if (strncmp(buf, "POWER_SUPPLY_CHARGE_NOW=", 24) == 0) {
sscanf(buf, "POWER_SUPPLY_CHARGE_NOW=%d", &remaining_capacity);
} else if (strncmp(buf, "POWER_SUPPLY_CHARGE_FULL=",25) == 0) {
sscanf(buf, "POWER_SUPPLY_CHARGE_FULL=%d", &acpi_design_capacity[idx]);
} else if (strncmp(buf, "POWER_SUPPLY_ENERGY_NOW=", 24) == 0) {
sscanf(buf, "POWER_SUPPLY_ENERGY_NOW=%d", &remaining_capacity);
} else if (strncmp(buf, "POWER_SUPPLY_ENERGY_FULL=",25) == 0) {
sscanf(buf, "POWER_SUPPLY_ENERGY_FULL=%d", &acpi_design_capacity[idx]);
}
}
fclose(sysfs_bat_fp[idx]);
sysfs_bat_fp[idx] = NULL;
} else if (acpi_bat_fp[idx] != NULL) {
/* ACPI */
/* read last full capacity if it's zero */
if (acpi_design_capacity[idx] == 0) {
static int rep2;
char path[128];
FILE *fp;
snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat);
fp = open_file(path, &rep2);
if (fp != NULL) {
while (!feof(fp)) {
char b[256];
if (fgets(b, 256, fp) == NULL) {
break;
}
if (sscanf(b, "last full capacity: %d",
&acpi_design_capacity[idx]) != 0) {
break;
}
}
fclose(fp);
}
}
fseek(acpi_bat_fp[idx], 0, SEEK_SET);
while (!feof(acpi_bat_fp[idx])) {
char buf[256];
if (fgets(buf, 256, acpi_bat_fp[idx]) == NULL) {
break;
}
if (buf[0] == 'r') {
sscanf(buf, "remaining capacity: %d", &remaining_capacity);
}
}
}
if (remaining_capacity < 0) {
return 0;
}
/* compute the battery percentage */
last_battery_perct[idx] =
(int) (((float) remaining_capacity / acpi_design_capacity[idx]) * 100);
if (last_battery_perct[idx] > 100) last_battery_perct[idx] = 100;
return last_battery_perct[idx];
}
int get_battery_perct_bar(const char *bar)
{
int idx;
get_battery_perct(bar);
idx = get_battery_idx(bar);
return (int) (last_battery_perct[idx] * 2.56 - 1);
}
/* On Apple powerbook and ibook:
$ cat /proc/pmu/battery_0
flags : 00000013
charge : 3623
max_charge : 3720
current : 388
voltage : 16787
time rem. : 900
$ cat /proc/pmu/info
PMU driver version : 2
PMU firmware version : 0c
AC Power : 1
Battery count : 1
*/
/* defines as in */
#define PMU_BATT_PRESENT 0x00000001
#define PMU_BATT_CHARGING 0x00000002
static FILE *pmu_battery_fp;
static FILE *pmu_info_fp;
static char pb_battery_info[3][32];
static double pb_battery_info_update;
#define PMU_PATH "/proc/pmu"
void get_powerbook_batt_info(char *buffer, size_t n, int i)
{
static int rep = 0;
const char *batt_path = PMU_PATH "/battery_0";
const char *info_path = PMU_PATH "/info";
unsigned int flags;
int charge, max_charge, ac = -1;
long timeval = -1;
/* don't update battery too often */
if (current_update_time - pb_battery_info_update < 29.5) {
snprintf(buffer, n, "%s", pb_battery_info[i]);
return;
}
pb_battery_info_update = current_update_time;
if (pmu_battery_fp == NULL) {
pmu_battery_fp = open_file(batt_path, &rep);
if (pmu_battery_fp == NULL) {
return;
}
}
if (pmu_battery_fp != NULL) {
rewind(pmu_battery_fp);
while (!feof(pmu_battery_fp)) {
char buf[32];
if (fgets(buf, sizeof(buf), pmu_battery_fp) == NULL) {
break;
}
if (buf[0] == 'f') {
sscanf(buf, "flags : %8x", &flags);
} else if (buf[0] == 'c' && buf[1] == 'h') {
sscanf(buf, "charge : %d", &charge);
} else if (buf[0] == 'm') {
sscanf(buf, "max_charge : %d", &max_charge);
} else if (buf[0] == 't') {
sscanf(buf, "time rem. : %ld", &timeval);
}
}
}
if (pmu_info_fp == NULL) {
pmu_info_fp = open_file(info_path, &rep);
if (pmu_info_fp == NULL) {
return;
}
}
if (pmu_info_fp != NULL) {
rewind(pmu_info_fp);
while (!feof(pmu_info_fp)) {
char buf[32];
if (fgets(buf, sizeof(buf), pmu_info_fp) == NULL) {
break;
}
if (buf[0] == 'A') {
sscanf(buf, "AC Power : %d", &ac);
}
}
}
/* update status string */
if ((ac && !(flags & PMU_BATT_PRESENT))) {
strncpy(pb_battery_info[PB_BATT_STATUS], "AC", sizeof(pb_battery_info[PB_BATT_STATUS]));
} else if (ac && (flags & PMU_BATT_PRESENT)
&& !(flags & PMU_BATT_CHARGING)) {
strncpy(pb_battery_info[PB_BATT_STATUS], "charged", sizeof(pb_battery_info[PB_BATT_STATUS]));
} else if ((flags & PMU_BATT_PRESENT) && (flags & PMU_BATT_CHARGING)) {
strncpy(pb_battery_info[PB_BATT_STATUS], "charging", sizeof(pb_battery_info[PB_BATT_STATUS]));
} else {
strncpy(pb_battery_info[PB_BATT_STATUS], "discharging", sizeof(pb_battery_info[PB_BATT_STATUS]));
}
/* update percentage string */
if (timeval == 0 && ac && (flags & PMU_BATT_PRESENT)
&& !(flags & PMU_BATT_CHARGING)) {
snprintf(pb_battery_info[PB_BATT_PERCENT],
sizeof(pb_battery_info[PB_BATT_PERCENT]), "100%%");
} else if (timeval == 0) {
snprintf(pb_battery_info[PB_BATT_PERCENT],
sizeof(pb_battery_info[PB_BATT_PERCENT]), "unknown");
} else {
snprintf(pb_battery_info[PB_BATT_PERCENT],
sizeof(pb_battery_info[PB_BATT_PERCENT]), "%d%%",
(charge * 100) / max_charge);
}
/* update time string */
if (timeval == 0) { /* fully charged or battery not present */
snprintf(pb_battery_info[PB_BATT_TIME],
sizeof(pb_battery_info[PB_BATT_TIME]), "unknown");
} else if (timeval < 60 * 60) { /* don't show secs */
format_seconds_short(pb_battery_info[PB_BATT_TIME],
sizeof(pb_battery_info[PB_BATT_TIME]), timeval);
} else {
format_seconds(pb_battery_info[PB_BATT_TIME],
sizeof(pb_battery_info[PB_BATT_TIME]), timeval);
}
snprintf(buffer, n, "%s", pb_battery_info[i]);
}
void update_top(void)
{
process_find_top(info.cpu, info.memu, info.time
#ifdef IOSTATS
, info.io
#endif
);
info.first_process = get_first_process();
}
#define ENTROPY_AVAIL_PATH "/proc/sys/kernel/random/entropy_avail"
int get_entropy_avail(unsigned int *val)
{
static int rep = 0;
FILE *fp;
if (!(fp = open_file(ENTROPY_AVAIL_PATH, &rep)))
return 1;
if (fscanf(fp, "%u", val) != 1)
return 1;
fclose(fp);
return 0;
}
#define ENTROPY_POOLSIZE_PATH "/proc/sys/kernel/random/poolsize"
int get_entropy_poolsize(unsigned int *val)
{
static int rep = 0;
FILE *fp;
if (!(fp = open_file(ENTROPY_POOLSIZE_PATH, &rep)))
return 1;
if (fscanf(fp, "%u", val) != 1)
return 1;
fclose(fp);
return 0;
}
const char *get_disk_protect_queue(const char *disk)
{
FILE *fp;
char path[128];
int state;
snprintf(path, 127, "/sys/block/%s/device/unload_heads", disk);
if (access(path, F_OK)) {
snprintf(path, 127, "/sys/block/%s/queue/protect", disk);
}
if ((fp = fopen(path, "r")) == NULL)
return "n/a ";
if (fscanf(fp, "%d\n", &state) != 1) {
fclose(fp);
return "failed";
}
fclose(fp);
return (state > 0) ? "frozen" : "free ";
}
typedef struct DEV_LIST_TYPE
{
char *dev_name;
int memoized;
struct DEV_LIST_TYPE *next;
} DEV_LIST, *DEV_LIST_PTR;
/* Same as sf #2942117 but memoized using a linked list */
int is_disk(char *dev)
{
char syspath[PATH_MAX];
char *slash;
static DEV_LIST_PTR dev_head = NULL;
DEV_LIST_PTR dev_cur, dev_last;
dev_cur = dev_head;
while (dev_cur) {
if (strcmp(dev_cur->dev_name, dev) == 0)
return dev_cur->memoized;
dev_last = dev_cur;
dev_cur = dev_cur->next;
}
dev_cur = (DEV_LIST_PTR)malloc(sizeof(DEV_LIST));
dev_cur->dev_name = (char *)malloc((strlen(dev)+1)*sizeof(char));
strcpy(dev_cur->dev_name,dev);
dev_cur->next = NULL;
while ((slash = strchr(dev, '/')))
*slash = '!';
snprintf(syspath, sizeof(syspath), "/sys/block/%s", dev);
dev_cur->memoized = !(access(syspath, F_OK));
if (dev_head)
dev_last->next = dev_cur;
else
dev_head = dev_cur;
return dev_cur->memoized;
}
void update_diskio(void)
{
FILE *fp;
static int rep = 0;
char buf[512], devbuf[64];
unsigned int major, minor;
int col_count = 0;
struct diskio_stat *cur;
unsigned int reads, writes;
unsigned int total_reads = 0, total_writes = 0;
stats.current = 0;
stats.current_read = 0;
stats.current_write = 0;
if (!(fp = open_file("/proc/diskstats", &rep))) {
return;
}
/* read reads and writes from all disks (minor = 0), including cd-roms
* and floppies, and sum them up */
while (fgets(buf, 512, fp)) {
col_count = sscanf(buf, "%u %u %s %*u %*u %u %*u %*u %*u %u", &major,
&minor, devbuf, &reads, &writes);
/* ignore subdevices (they have only 3 matching entries in their line)
* and virtual devices (LVM, network block devices, RAM disks, Loopback)
*
* XXX: ignore devices which are part of a SW RAID (MD_MAJOR) */
if (col_count == 5 && major != LVM_BLK_MAJOR && major != NBD_MAJOR
&& major != RAMDISK_MAJOR && major != LOOP_MAJOR) {
/* check needed for kernel >= 2.6.31, see sf #2942117 */
if (is_disk(devbuf)) {
total_reads += reads;
total_writes += writes;
}
} else {
col_count = sscanf(buf, "%u %u %s %*u %u %*u %u",
&major, &minor, devbuf, &reads, &writes);
if (col_count != 5) {
continue;
}
}
cur = stats.next;
while (cur && strcmp(devbuf, cur->dev))
cur = cur->next;
if (cur)
update_diskio_values(cur, reads, writes);
}
update_diskio_values(&stats, total_reads, total_writes);
fclose(fp);
}