/* Conky, a system monitor, based on torsmo * * Any original torsmo code is licensed under the BSD license * * All code written since the fork of torsmo is licensed under the GPL * * Please see COPYING for details * * Copyright (c) 2004, Hannu Saransaari and Lauri Hakkarainen * Copyright (c) 2007 Toni Spets * Copyright (c) 2005-2007 Brenden Matthews, Philip Kovacs, et. al. * (see AUTHORS) * All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * $Id$ */ #include "conky.h" #include #include #include #include #include #include #include #include #include #include #ifndef HAVE_CLOCK_GETTIME #include #endif #include #include // #include #include #include "top.h" #include #include #include #include #include #include #ifdef _NET_IF_H #define _LINUX_IF_H #endif #include #include #ifdef HAVE_IWLIB #include #endif #define SHORTSTAT_TEMPL "%*s %llu %llu %llu" #define LONGSTAT_TEMPL "%*s %llu %llu %llu " static int show_nice_processes; /* This flag tells the linux routines to use the /proc system where possible, * even if other api's are available, e.g. sysinfo() or getloadavg(). * the reason for this is to allow for /proc-based distributed monitoring. * using a flag in this manner creates less confusing code. */ static int prefer_proc = 0; void prepare_update() { } void update_uptime() { #ifdef HAVE_SYSINFO if (!prefer_proc) { struct sysinfo s_info; sysinfo(&s_info); info.uptime = (double) s_info.uptime; } else #endif { static int rep = 0; FILE *fp; if (!(fp = open_file("/proc/uptime", &rep))) { info.uptime = 0.0; return; } fscanf(fp, "%lf", &info.uptime); fclose(fp); } info.mask |= (1 << INFO_UPTIME); } int check_mount(char *s) { int ret = 0; FILE *mtab = fopen("/etc/mtab", "r"); if (mtab) { char buf1[256], buf2[128]; while (fgets(buf1, 256, mtab)) { sscanf(buf1, "%*s %128s", buf2); if (!strcmp(s, buf2)) { ret = 1; break; } } fclose(mtab); } else { ERR("Could not open mtab"); } return ret; } /* these things are also in sysinfo except Buffers: * (that's why I'm reading them from proc) */ void update_meminfo() { FILE *meminfo_fp; static int rep = 0; /* unsigned int a; */ char buf[256]; info.mem = info.memmax = info.swap = info.swapmax = info.bufmem = info.buffers = info.cached = 0; if (!(meminfo_fp = open_file("/proc/meminfo", &rep))) { return; } while (!feof(meminfo_fp)) { if (fgets(buf, 255, meminfo_fp) == NULL) { break; } if (strncmp(buf, "MemTotal:", 9) == 0) { sscanf(buf, "%*s %Lu", &info.memmax); } else if (strncmp(buf, "MemFree:", 8) == 0) { sscanf(buf, "%*s %Lu", &info.mem); } else if (strncmp(buf, "SwapTotal:", 10) == 0) { sscanf(buf, "%*s %Lu", &info.swapmax); } else if (strncmp(buf, "SwapFree:", 9) == 0) { sscanf(buf, "%*s %Lu", &info.swap); } else if (strncmp(buf, "Buffers:", 8) == 0) { sscanf(buf, "%*s %Lu", &info.buffers); } else if (strncmp(buf, "Cached:", 7) == 0) { sscanf(buf, "%*s %Lu", &info.cached); } } info.mem = info.memmax - info.mem; info.swap = info.swapmax - info.swap; info.bufmem = info.cached + info.buffers; info.mask |= (1 << INFO_MEM) | (1 << INFO_BUFFERS); fclose(meminfo_fp); } int get_laptop_mode() { FILE *fp; int val = -1; if ((fp = fopen("/proc/sys/vm/laptop_mode", "r")) != NULL) fscanf(fp, "%d\n", &val); fclose(fp); return val; } /* my system says: * # cat /sys/block/sda/queue/scheduler * noop [anticipatory] cfq */ char *get_ioscheduler(char *disk) { FILE *fp; char buf[128]; if (!disk) return "n/a"; snprintf(buf, 127, "/sys/block/%s/queue/scheduler", disk); if ((fp = fopen(buf, "r")) == NULL) { return strdup("n/a"); } while (!feof(fp)) { fscanf(fp, "%127s", buf); if (buf[0] == '[') { buf[strlen(buf) - 1] = '\0'; fclose(fp); return strdup(buf + 1); } } fclose(fp); return strdup("n/a"); } int interface_up(const char *dev) { int fd; struct ifreq ifr; if((fd = socket(PF_INET, SOCK_DGRAM, 0)) < 0) { CRIT_ERR("could not create sockfd"); return 0; } strncpy(ifr.ifr_name, dev, IFNAMSIZ); if(ioctl(fd, SIOCGIFFLAGS, &ifr)) { /* if device does not exist, treat like not up */ if (errno != ENODEV) perror("SIOCGIFFLAGS"); } else { close(fd); return (ifr.ifr_flags & IFF_UP); } close(fd); return 0; } #define COND_FREE(x) if(x) free(x); x = 0 #define SAVE_SET_STRING(x, y) \ if (x && strcmp((char *)x, (char *)y)) { \ free(x); \ x = strdup("multiple"); \ } else if (!x) { \ x = strdup(y); \ } void update_gateway_info() { FILE *fp; struct in_addr ina; char iface[64]; unsigned long dest, gate, mask; unsigned int flags; short ref, use, metric, mtu, win, irtt; struct gateway_info *gw_info = &info.gw_info; COND_FREE(gw_info->iface); COND_FREE(gw_info->ip); gw_info->count = 0; if ((fp = fopen("/proc/net/route", "r")) == NULL) { perror("fopen()"); goto FAIL; } if (fscanf(fp, "%*[^\n]\n") == EOF) { perror("fscanf()"); goto CLOSE_FAIL; } while (!feof(fp)) { // Iface Destination Gateway Flags RefCnt Use Metric Mask MTU Window IRTT if(fscanf(fp, "%63s %lx %lx %x %hd %hd %hd %lx %hd %hd %hd\n", iface, &dest, &gate, &flags, &ref, &use, &metric, &mask, &mtu, &win, &irtt) != 11) { perror("fscanf()"); goto CLOSE_FAIL; } if (flags & RTF_GATEWAY && dest == 0 && mask == 0) { gw_info->count++; SAVE_SET_STRING(gw_info->iface, iface) ina.s_addr = gate; SAVE_SET_STRING(gw_info->ip, inet_ntoa(ina)) } } fclose(fp); return; CLOSE_FAIL: fclose(fp); FAIL: info.gw_info.iface = info.gw_info.ip = strdup("failed"); return; } inline void update_net_stats() { FILE *net_dev_fp; static int rep = 0; // FIXME: arbitrary size chosen to keep code simple. int i, i2; unsigned int curtmp1, curtmp2; unsigned int k; struct ifconf conf; char buf[256]; double delta; #ifdef HAVE_IWLIB // wireless info variables int skfd, has_bitrate = 0; struct wireless_info *winfo; struct iwreq wrq; #endif /* get delta */ delta = current_update_time - last_update_time; if (delta <= 0.0001) { return; } /* open file and ignore first two lines */ if (!(net_dev_fp = open_file("/proc/net/dev", &rep))) { clear_net_stats(); return; } fgets(buf, 255, net_dev_fp); /* garbage */ fgets(buf, 255, net_dev_fp); /* garbage (field names) */ /* read each interface */ for (i2 = 0; i2 < 16; i2++) { struct net_stat *ns; char *s, *p; char temp_addr[17]; long long r, t, last_recv, last_trans; if (fgets(buf, 255, net_dev_fp) == NULL) { break; } p = buf; while (isspace((int) *p)) { p++; } s = p; while (*p && *p != ':') { p++; } if (*p == '\0') { continue; } *p = '\0'; p++; ns = get_net_stat(s); ns->up = 1; memset(&(ns->addr.sa_data), 0, 14); if(NULL == ns->addrs) ns->addrs = (char*) malloc(17 * 16); if(NULL != ns->addrs) memset(ns->addrs, 0, 17 * 16); /* Up to 17 chars per ip, max 16 interfaces. Nasty memory usage... */ last_recv = ns->recv; last_trans = ns->trans; /* bytes packets errs drop fifo frame compressed multicast|bytes ... */ sscanf(p, "%Ld %*d %*d %*d %*d %*d %*d %*d %Ld", &r, &t); /* if recv or trans is less than last time, an overflow happened */ if (r < ns->last_read_recv) { last_recv = 0; } else { ns->recv += (r - ns->last_read_recv); } ns->last_read_recv = r; if (t < ns->last_read_trans) { last_trans = 0; } else { ns->trans += (t - ns->last_read_trans); } ns->last_read_trans = t; /*** ip addr patch ***/ i = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); conf.ifc_buf = malloc(sizeof(struct ifreq) * 16); conf.ifc_len = sizeof(struct ifreq) * 16; memset(conf.ifc_buf, 0, conf.ifc_len); ioctl((long) i, SIOCGIFCONF, &conf); for (k = 0; k < conf.ifc_len / sizeof(struct ifreq); k++) { struct net_stat *ns; if (!(((struct ifreq *) conf.ifc_buf) + k)) break; ns = get_net_stat( ((struct ifreq *) conf.ifc_buf)[k].ifr_ifrn.ifrn_name); ns->addr = ((struct ifreq *) conf.ifc_buf)[k].ifr_ifru.ifru_addr; if(NULL != ns->addrs) { sprintf(temp_addr, "%u.%u.%u.%u, ", ns->addr.sa_data[2] & 255, ns->addr.sa_data[3] & 255, ns->addr.sa_data[4] & 255, ns->addr.sa_data[5] & 255); if(NULL == strstr(ns->addrs, temp_addr)) strncpy(ns->addrs + strlen(ns->addrs), temp_addr, 17); } } close((long) i); free(conf.ifc_buf); /*** end ip addr patch ***/ /* calculate speeds */ ns->net_rec[0] = (ns->recv - last_recv) / delta; ns->net_trans[0] = (ns->trans - last_trans) / delta; curtmp1 = 0; curtmp2 = 0; // get an average for (i = 0; (unsigned) i < info.net_avg_samples; i++) { curtmp1 += ns->net_rec[i]; curtmp2 += ns->net_trans[i]; } if (curtmp1 == 0) { curtmp1 = 1; } if (curtmp2 == 0) { curtmp2 = 1; } ns->recv_speed = curtmp1 / (double) info.net_avg_samples; ns->trans_speed = curtmp2 / (double) info.net_avg_samples; if (info.net_avg_samples > 1) { for (i = info.net_avg_samples; i > 1; i--) { ns->net_rec[i - 1] = ns->net_rec[i - 2]; ns->net_trans[i - 1] = ns->net_trans[i - 2]; } } #ifdef HAVE_IWLIB /* update wireless info */ winfo = malloc(sizeof(struct wireless_info)); memset(winfo, 0, sizeof(struct wireless_info)); skfd = iw_sockets_open(); if (iw_get_basic_config(skfd, s, &(winfo->b)) > -1) { // set present winfo variables if (iw_get_stats(skfd, s, &(winfo->stats), &winfo->range, winfo->has_range) >= 0) { winfo->has_stats = 1; } if (iw_get_range_info(skfd, s, &(winfo->range)) >= 0) { winfo->has_range = 1; } if (iw_get_ext(skfd, s, SIOCGIWAP, &wrq) >= 0) { winfo->has_ap_addr = 1; memcpy(&(winfo->ap_addr), &(wrq.u.ap_addr), sizeof(sockaddr)); } // get bitrate if (iw_get_ext(skfd, s, SIOCGIWRATE, &wrq) >= 0) { memcpy(&(winfo->bitrate), &(wrq.u.bitrate), sizeof(iwparam)); iw_print_bitrate(ns->bitrate, 16, winfo->bitrate.value); has_bitrate = 1; } // get link quality if (winfo->has_range && winfo->has_stats && ((winfo->stats.qual.level != 0) || (winfo->stats.qual.updated & IW_QUAL_DBM))) { if (!(winfo->stats.qual.updated & IW_QUAL_QUAL_INVALID)) { ns->link_qual = winfo->stats.qual.qual; ns->link_qual_max = winfo->range.max_qual.qual; } } // get ap mac if (winfo->has_ap_addr) { iw_sawap_ntop(&winfo->ap_addr, ns->ap); } // get essid if (winfo->b.has_essid) { if (winfo->b.essid_on) { snprintf(ns->essid, 32, "%s", winfo->b.essid); } else { snprintf(ns->essid, 32, "off/any"); } } snprintf(ns->mode, 16, "%s", iw_operation_mode[winfo->b.mode]); } iw_sockets_close(skfd); free(winfo); #endif } fclose(net_dev_fp); info.mask |= (1 << INFO_NET); } int result; void update_total_processes() { #ifdef HAVE_SYSINFO if (!prefer_proc) { struct sysinfo s_info; sysinfo(&s_info); info.procs = s_info.procs; } else #endif { static int rep = 0; FILE *fp; if (!(fp = open_file("/proc/loadavg", &rep))) { info.procs = 0; return; } fscanf(fp, "%*f %*f %*f %*d/%hd", &info.procs); fclose(fp); } info.mask |= (1 << INFO_PROCS); } #define CPU_SAMPLE_COUNT 15 struct cpu_info { unsigned long long cpu_user; unsigned long long cpu_system; unsigned long long cpu_nice; unsigned long long cpu_idle; unsigned long long cpu_iowait; unsigned long long cpu_irq; unsigned long long cpu_softirq; unsigned long long cpu_steal; unsigned long long cpu_total; unsigned long long cpu_active_total; unsigned long long cpu_last_total; unsigned long long cpu_last_active_total; double cpu_val[CPU_SAMPLE_COUNT]; }; static short cpu_setup = 0; /* Determine if this kernel gives us "extended" statistics information in * /proc/stat. * Kernels around 2.5 and earlier only reported user, system, nice, and * idle values in proc stat. * Kernels around 2.6 and greater report these PLUS iowait, irq, softirq, * and steal */ void determine_longstat(char *buf) { unsigned long long iowait = 0; KFLAG_SETOFF(KFLAG_IS_LONGSTAT); /* scanf will either return -1 or 1 because there is only 1 assignment */ if (sscanf(buf, "%*s %*d %*d %*d %*d %llu", &iowait) > 0) { KFLAG_SETON(KFLAG_IS_LONGSTAT); } } void get_cpu_count() { FILE *stat_fp; static int rep = 0; if (info.cpu_usage) { return; } char buf[256]; if (!(stat_fp = open_file("/proc/stat", &rep))) { return; } info.cpu_count = 0; while (!feof(stat_fp)) { if (fgets(buf, 255, stat_fp) == NULL) { break; } if (strncmp(buf, "cpu", 3) == 0 && isdigit(buf[3])) { if (info.cpu_count == 0) { determine_longstat(buf); } info.cpu_count++; } } info.cpu_usage = malloc((info.cpu_count + 1) * sizeof(float)); fclose(stat_fp); } #define TMPL_LONGSTAT "%*s %llu %llu %llu %llu %llu %llu %llu %llu" #define TMPL_SHORTSTAT "%*s %llu %llu %llu %llu" inline static void update_stat() { FILE *stat_fp; static int rep = 0; static struct cpu_info *cpu = NULL; char buf[256]; unsigned int i; unsigned int index; double curtmp; char *stat_template = NULL; unsigned int malloc_cpu_size = 0; /* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */ if (!cpu_setup || !info.cpu_usage) { get_cpu_count(); cpu_setup = 1; } if (!stat_template) { stat_template = KFLAG_ISSET(KFLAG_IS_LONGSTAT) ? TMPL_LONGSTAT : TMPL_SHORTSTAT; } if (!cpu) { malloc_cpu_size = (info.cpu_count + 1) * sizeof(struct cpu_info); cpu = malloc(malloc_cpu_size); memset(cpu, 0, malloc_cpu_size); } if (!(stat_fp = open_file("/proc/stat", &rep))) { info.run_procs = 0; if (info.cpu_usage) { memset(info.cpu_usage, 0, info.cpu_count * sizeof(float)); } return; } index = 0; while (!feof(stat_fp)) { if (fgets(buf, 255, stat_fp) == NULL) { break; } if (strncmp(buf, "procs_running ", 14) == 0) { sscanf(buf, "%*s %hu", &info.run_procs); info.mask |= (1 << INFO_RUN_PROCS); } else if (strncmp(buf, "cpu", 3) == 0) { index = isdigit(buf[3]) ? ((int) buf[3]) - 0x2F : 0; sscanf(buf, stat_template, &(cpu[index].cpu_user), &(cpu[index].cpu_nice), &(cpu[index].cpu_system), &(cpu[index].cpu_idle), &(cpu[index].cpu_iowait), &(cpu[index].cpu_irq), &(cpu[index].cpu_softirq), &(cpu[index].cpu_steal)); cpu[index].cpu_total = cpu[index].cpu_user + cpu[index].cpu_nice + cpu[index].cpu_system + cpu[index].cpu_idle + cpu[index].cpu_iowait + cpu[index].cpu_irq + cpu[index].cpu_softirq + cpu[index].cpu_steal; cpu[index].cpu_active_total = cpu[index].cpu_total - (cpu[index].cpu_idle + cpu[index].cpu_iowait); info.mask |= (1 << INFO_CPU); double delta = current_update_time - last_update_time; if (delta <= 0.001) { break; } cpu[index].cpu_val[0] = (cpu[index].cpu_active_total - cpu[index].cpu_last_active_total) / (float) (cpu[index].cpu_total - cpu[index].cpu_last_total); curtmp = 0; for (i = 0; i < info.cpu_avg_samples; i++) { curtmp += cpu[index].cpu_val[i]; } /* TESTING -- I've removed this, because I don't think it is right. * You shouldn't divide by the cpu count here ... * removing for testing */ /* if (index == 0) { info.cpu_usage[index] = curtmp / info.cpu_avg_samples / info.cpu_count; } else { info.cpu_usage[index] = curtmp / info.cpu_avg_samples; } */ /* TESTING -- this line replaces the prev. "suspect" if/else */ info.cpu_usage[index] = curtmp / info.cpu_avg_samples; cpu[index].cpu_last_total = cpu[index].cpu_total; cpu[index].cpu_last_active_total = cpu[index].cpu_active_total; for (i = info.cpu_avg_samples - 1; i > 0; i--) { cpu[index].cpu_val[i] = cpu[index].cpu_val[i - 1]; } } } fclose(stat_fp); } void update_running_processes() { update_stat(); } void update_cpu_usage() { update_stat(); } void update_load_average() { #ifdef HAVE_GETLOADAVG if (!prefer_proc) { double v[3]; getloadavg(v, 3); info.loadavg[0] = (float) v[0]; info.loadavg[1] = (float) v[1]; info.loadavg[2] = (float) v[2]; } else #endif { static int rep = 0; FILE *fp; if (!(fp = open_file("/proc/loadavg", &rep))) { info.loadavg[0] = info.loadavg[1] = info.loadavg[2] = 0.0; return; } fscanf(fp, "%f %f %f", &info.loadavg[0], &info.loadavg[1], &info.loadavg[2]); fclose(fp); } info.mask |= (1 << INFO_LOADAVG); } #define PROC_I8K "/proc/i8k" #define I8K_DELIM " " static char *i8k_procbuf = NULL; void update_i8k() { FILE *fp; if (!i8k_procbuf) { i8k_procbuf = (char *) malloc(128 * sizeof(char)); } if ((fp = fopen(PROC_I8K, "r")) == NULL) { CRIT_ERR("/proc/i8k doesn't exist! use insmod to make sure the kernel " "driver is loaded..."); } memset(&i8k_procbuf[0], 0, 128); if (fread(&i8k_procbuf[0], sizeof(char), 128, fp) == 0) { ERR("something wrong with /proc/i8k..."); } fclose(fp); i8k.version = strtok(&i8k_procbuf[0], I8K_DELIM); i8k.bios = strtok(NULL, I8K_DELIM); i8k.serial = strtok(NULL, I8K_DELIM); i8k.cpu_temp = strtok(NULL, I8K_DELIM); i8k.left_fan_status = strtok(NULL, I8K_DELIM); i8k.right_fan_status = strtok(NULL, I8K_DELIM); i8k.left_fan_rpm = strtok(NULL, I8K_DELIM); i8k.right_fan_rpm = strtok(NULL, I8K_DELIM); i8k.ac_status = strtok(NULL, I8K_DELIM); i8k.buttons_status = strtok(NULL, I8K_DELIM); } /***********************************************************/ /***********************************************************/ /***********************************************************/ static int no_dots(const struct dirent *d) { if (d->d_name[0] == '.') { return 0; } return 1; } static int get_first_file_in_a_directory(const char *dir, char *s, int *rep) { struct dirent **namelist; int i, n; n = scandir(dir, &namelist, no_dots, alphasort); if (n < 0) { if (!rep || !*rep) { ERR("scandir for %s: %s", dir, strerror(errno)); if (rep) { *rep = 1; } } return 0; } else { if (n == 0) { return 0; } strncpy(s, namelist[0]->d_name, 255); s[255] = '\0'; for (i = 0; i < n; i++) { free(namelist[i]); } free(namelist); return 1; } } int open_sysfs_sensor(const char *dir, const char *dev, const char *type, int n, int *div, char *devtype) { char path[256]; char buf[256]; int fd; int divfd; memset(buf, 0, sizeof(buf)); /* if device is NULL or *, get first */ if (dev == NULL || strcmp(dev, "*") == 0) { static int rep = 0; if (!get_first_file_in_a_directory(dir, buf, &rep)) { return -1; } dev = buf; } if (strcmp(dir, "/sys/class/hwmon/") == 0) { if (*buf) { /* buf holds result from get_first_file_in_a_directory() above, * e.g. "hwmon0" -- append "/device" */ strcat(buf, "/device"); } else { /* dev holds device number N as a string, * e.g. "0", -- convert to "hwmon0/device" */ sprintf(buf, "hwmon%s/device", dev); dev = buf; } } /* change vol to in */ if (strcmp(type, "vol") == 0) { type = "in"; } if (strcmp(type, "tempf") == 0) { snprintf(path, 255, "%s%s/%s%d_input", dir, dev, "temp", n); } else { snprintf(path, 255, "%s%s/%s%d_input", dir, dev, type, n); } strncpy(devtype, path, 255); /* open file */ fd = open(path, O_RDONLY); if (fd < 0) { CRIT_ERR("can't open '%s': %s\nplease check your device or remove this " "var from Conky", path, strerror(errno)); } if (strcmp(type, "in") == 0 || strcmp(type, "temp") == 0 || strcmp(type, "tempf") == 0) { *div = 1; } else { *div = 0; } /* fan does not use *_div as a read divisor */ if (strcmp("fan", type) == 0) { return fd; } /* test if *_div file exist, open it and use it as divisor */ if (strcmp(type, "tempf") == 0) { snprintf(path, 255, "%s%s/%s%d_div", dir, "one", "two", n); } else { snprintf(path, 255, "%s%s/%s%d_div", dir, dev, type, n); } divfd = open(path, O_RDONLY); if (divfd > 0) { /* read integer */ char divbuf[64]; int divn; divn = read(divfd, divbuf, 63); /* should read until n == 0 but I doubt that kernel will give these * in multiple pieces. :) */ if (divn < 0) { ERR("open_sysfs_sensor(): can't read from sysfs"); } else { divbuf[divn] = '\0'; *div = atoi(divbuf); } } close(divfd); return fd; } double get_sysfs_info(int *fd, int div, char *devtype, char *type) { int val = 0; if (*fd <= 0) { return 0; } lseek(*fd, 0, SEEK_SET); /* read integer */ { char buf[64]; int n; n = read(*fd, buf, 63); /* should read until n == 0 but I doubt that kernel will give these * in multiple pieces. :) */ if (n < 0) { ERR("get_sysfs_info(): read from %s failed\n", devtype); } else { buf[n] = '\0'; val = atoi(buf); } } close(*fd); /* open file */ *fd = open(devtype, O_RDONLY); if (*fd < 0) { ERR("can't open '%s': %s", devtype, strerror(errno)); } /* My dirty hack for computing CPU value * Filedil, from forums.gentoo.org */ /* if (strstr(devtype, "temp1_input") != NULL) { return -15.096 + 1.4893 * (val / 1000.0); } */ /* divide voltage and temperature by 1000 */ /* or if any other divisor is given, use that */ if (strcmp(type, "tempf") == 0) { if (div > 1) { return ((val / div + 40) * 9.0 / 5) - 40; } else if (div) { return ((val / 1000.0 + 40) * 9.0 / 5) - 40; } else { return ((val + 40) * 9.0 / 5) - 40; } } else { if (div > 1) { return val / div; } else if (div) { return val / 1000.0; } else { return val; } } } /* Prior to kernel version 2.6.12, the CPU fan speed was available in * ADT746X_FAN_OLD, whereas later kernel versions provide this information in * ADT746X_FAN. */ #define ADT746X_FAN "/sys/devices/temperatures/sensor1_fan_speed" #define ADT746X_FAN_OLD "/sys/devices/temperatures/cpu_fan_speed" void get_adt746x_fan(char *p_client_buffer, size_t client_buffer_size) { static int rep = 0; char adt746x_fan_state[64]; FILE *fp; if (!p_client_buffer || client_buffer_size <= 0) { return; } if ((fp = open_file(ADT746X_FAN, &rep)) == NULL && (fp = open_file(ADT746X_FAN_OLD, &rep)) == NULL) { sprintf(adt746x_fan_state, "adt746x not found"); } else { fgets(adt746x_fan_state, sizeof(adt746x_fan_state), fp); adt746x_fan_state[strlen(adt746x_fan_state) - 1] = 0; fclose(fp); } snprintf(p_client_buffer, client_buffer_size, "%s", adt746x_fan_state); } /* Prior to kernel version 2.6.12, the CPU temperature was found in * ADT746X_CPU_OLD, whereas later kernel versions provide this information in * ADT746X_CPU. */ #define ADT746X_CPU "/sys/devices/temperatures/sensor1_temperature" #define ADT746X_CPU_OLD "/sys/devices/temperatures/cpu_temperature" void get_adt746x_cpu(char *p_client_buffer, size_t client_buffer_size) { static int rep = 0; char adt746x_cpu_state[64]; FILE *fp; if (!p_client_buffer || client_buffer_size <= 0) { return; } if ((fp = open_file(ADT746X_CPU, &rep)) == NULL && (fp = open_file(ADT746X_CPU_OLD, &rep)) == NULL) { sprintf(adt746x_cpu_state, "adt746x not found"); } else { fscanf(fp, "%2s", adt746x_cpu_state); fclose(fp); } snprintf(p_client_buffer, client_buffer_size, "%s", adt746x_cpu_state); } /* Thanks to "Walt Nelson" */ /***********************************************************************/ /* This file is part of x86info. * (C) 2001 Dave Jones. * * Licensed under the terms of the GNU GPL License version 2. * * Estimate CPU MHz routine by Andrea Arcangeli * Small changes by David Sterba */ #if defined(__i386) || defined(__x86_64) __inline__ unsigned long long int rdtsc() { unsigned long long int x; __asm__ volatile(".byte 0x0f, 0x31":"=A" (x)); return x; } #endif /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ void get_freq_dynamic(char *p_client_buffer, size_t client_buffer_size, char *p_format, int divisor) { #if defined(__i386) || defined(__x86_64) struct timezone tz; struct timeval tvstart, tvstop; unsigned long long cycles[2]; /* gotta be 64 bit */ unsigned int microseconds; /* total time taken */ if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) { return; } memset(&tz, 0, sizeof(tz)); /* get this function in cached memory */ gettimeofday(&tvstart, &tz); cycles[0] = rdtsc(); gettimeofday(&tvstart, &tz); /* we don't trust that this is any specific length of time */ usleep(100); cycles[1] = rdtsc(); gettimeofday(&tvstop, &tz); microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) + (tvstop.tv_usec - tvstart.tv_usec); snprintf(p_client_buffer, client_buffer_size, p_format, (float) ((cycles[1] - cycles[0]) / microseconds) / divisor); return; #else /* FIXME: hardwired: get freq for first cpu! * this whole function needs to be rethought and redone for * multi-cpu/multi-core/multi-threaded environments and * arbitrary combinations thereof */ get_freq(p_client_buffer, client_buffer_size, p_format, divisor, 1); return; #endif } #define CPUFREQ_PREFIX "/sys/devices/system/cpu" #define CPUFREQ_POSTFIX "cpufreq/scaling_cur_freq" /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ char get_freq(char *p_client_buffer, size_t client_buffer_size, char *p_format, int divisor, unsigned int cpu) { FILE *f; static int rep = 0; char frequency[32]; char s[256]; double freq = 0; if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) { return 0; } if (!prefer_proc) { char current_freq_file[128]; snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu - 1, CPUFREQ_POSTFIX); f = fopen(current_freq_file, "r"); if (f) { /* if there's a cpufreq /sys node, read the current frequency from * this node and divide by 1000 to get Mhz. */ if (fgets(s, sizeof(s), f)) { s[strlen(s) - 1] = '\0'; freq = strtod(s, NULL); } fclose(f); snprintf(p_client_buffer, client_buffer_size, p_format, (freq / 1000) / divisor); return 1; } } // open the CPU information file f = open_file("/proc/cpuinfo", &rep); if (!f) { perror("Conky: Failed to access '/proc/cpuinfo' at get_freq()"); return 0; } // read the file while (fgets(s, sizeof(s), f) != NULL) { #if defined(__i386) || defined(__x86_64) // and search for the cpu mhz if (strncmp(s, "cpu MHz", 7) == 0 && cpu == 0) { #else #if defined(__alpha) // different on alpha if (strncmp(s, "cycle frequency [Hz]", 20) == 0 && cpu == 0) { #else // this is different on ppc for some reason if (strncmp(s, "clock", 5) == 0 && cpu == 0) { #endif // defined(__alpha) #endif // defined(__i386) || defined(__x86_64) // copy just the number strcpy(frequency, strchr(s, ':') + 2); #if defined(__alpha) // strip " est.\n" frequency[strlen(frequency) - 6] = '\0'; // kernel reports in Hz freq = strtod(frequency, NULL) / 1000000; #else // strip \n frequency[strlen(frequency) - 1] = '\0'; freq = strtod(frequency, NULL); #endif break; } if (strncmp(s, "processor", 9) == 0) { cpu--; continue; } } fclose(f); snprintf(p_client_buffer, client_buffer_size, p_format, (float) freq / divisor); return 1; } #define CPUFREQ_VOLTAGE "cpufreq/scaling_voltages" /* /sys/devices/system/cpu/cpu0/cpufreq/scaling_voltages looks something * like this: # frequency voltage 1800000 1340 1600000 1292 1400000 1100 1200000 988 1000000 1116 800000 1004 600000 988 * Peter Tarjan (ptarjan@citromail.hu) */ /* return cpu voltage in mV (use divisor=1) or V (use divisor=1000) */ char get_voltage(char *p_client_buffer, size_t client_buffer_size, char *p_format, int divisor, unsigned int cpu) { FILE *f; char s[256]; int freq = 0; int voltage = 0; char current_freq_file[128]; int freq_comp = 0; /* build the voltage file name */ cpu--; snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu, CPUFREQ_POSTFIX); if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) { return 0; } /* read the current cpu frequency from the /sys node */ f = fopen(current_freq_file, "r"); if (f) { if (fgets(s, sizeof(s), f)) { s[strlen(s) - 1] = '\0'; freq = strtod(s, NULL); } fclose(f); } else { fprintf(stderr, "Conky: Failed to access '%s' at ", current_freq_file); perror("get_voltage()"); if (f) { fclose(f); } return 0; } snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu, CPUFREQ_VOLTAGE); /* use the current cpu frequency to find the corresponding voltage */ f = fopen(current_freq_file, "r"); if (f) { while (!feof(f)) { char line[256]; if (fgets(line, 255, f) == NULL) { break; } sscanf(line, "%d %d", &freq_comp, &voltage); if (freq_comp == freq) { break; } } fclose(f); } else { fprintf(stderr, "Conky: Failed to access '%s' at ", current_freq_file); perror("get_voltage()"); if (f) { fclose(f); } return 0; } snprintf(p_client_buffer, client_buffer_size, p_format, (float) voltage / divisor); return 1; } #define ACPI_FAN_DIR "/proc/acpi/fan/" void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) { static int rep = 0; char buf[256]; char buf2[256]; FILE *fp; if (!p_client_buffer || client_buffer_size <= 0) { return; } /* yeah, slow... :/ */ if (!get_first_file_in_a_directory(ACPI_FAN_DIR, buf, &rep)) { snprintf(p_client_buffer, client_buffer_size, "no fans?"); return; } snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_FAN_DIR, buf); fp = open_file(buf2, &rep); if (!fp) { snprintf(p_client_buffer, client_buffer_size, "can't open fan's state file"); return; } memset(buf, 0, sizeof(buf)); fscanf(fp, "%*s %99s", buf); fclose(fp); snprintf(p_client_buffer, client_buffer_size, "%s", buf); } #define ACPI_AC_ADAPTER_DIR "/proc/acpi/ac_adapter/" void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size) { static int rep = 0; char buf[256]; char buf2[256]; FILE *fp; if (!p_client_buffer || client_buffer_size <= 0) { return; } /* yeah, slow... :/ */ if (!get_first_file_in_a_directory(ACPI_AC_ADAPTER_DIR, buf, &rep)) { snprintf(p_client_buffer, client_buffer_size, "no ac_adapters?"); return; } snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_AC_ADAPTER_DIR, buf); fp = open_file(buf2, &rep); if (!fp) { snprintf(p_client_buffer, client_buffer_size, "No ac adapter found.... where is it?"); return; } memset(buf, 0, sizeof(buf)); fscanf(fp, "%*s %99s", buf); fclose(fp); snprintf(p_client_buffer, client_buffer_size, "%s", buf); } /* /proc/acpi/thermal_zone/THRM/cooling_mode cooling mode: active /proc/acpi/thermal_zone/THRM/polling_frequency /proc/acpi/thermal_zone/THRM/state state: ok /proc/acpi/thermal_zone/THRM/temperature temperature: 45 C /proc/acpi/thermal_zone/THRM/trip_points critical (S5): 73 C passive: 73 C: tc1=4 tc2=3 tsp=40 devices=0xcdf6e6c0 */ #define ACPI_THERMAL_DIR "/proc/acpi/thermal_zone/" #define ACPI_THERMAL_FORMAT "/proc/acpi/thermal_zone/%s/temperature" int open_acpi_temperature(const char *name) { char path[256]; char buf[256]; int fd; if (name == NULL || strcmp(name, "*") == 0) { static int rep = 0; if (!get_first_file_in_a_directory(ACPI_THERMAL_DIR, buf, &rep)) { return -1; } name = buf; } snprintf(path, 255, ACPI_THERMAL_FORMAT, name); fd = open(path, O_RDONLY); if (fd < 0) { ERR("can't open '%s': %s", path, strerror(errno)); } return fd; } static double last_acpi_temp; static double last_acpi_temp_time; double get_acpi_temperature(int fd) { if (fd <= 0) { return 0; } /* don't update acpi temperature too often */ if (current_update_time - last_acpi_temp_time < 11.32) { return last_acpi_temp; } last_acpi_temp_time = current_update_time; /* seek to beginning */ lseek(fd, 0, SEEK_SET); /* read */ { char buf[256]; int n; n = read(fd, buf, 255); if (n < 0) { ERR("can't read fd %d: %s", fd, strerror(errno)); } else { buf[n] = '\0'; sscanf(buf, "temperature: %lf", &last_acpi_temp); } } return last_acpi_temp; } /* hipo@lepakko hipo $ cat /proc/acpi/battery/BAT1/info present: yes design capacity: 4400 mAh last full capacity: 4064 mAh battery technology: rechargeable design voltage: 14800 mV design capacity warning: 300 mAh design capacity low: 200 mAh capacity granularity 1: 32 mAh capacity granularity 2: 32 mAh model number: 02KT serial number: 16922 battery type: LION OEM info: SANYO */ /* hipo@lepakko conky $ cat /proc/acpi/battery/BAT1/state present: yes capacity state: ok charging state: unknown present rate: 0 mA remaining capacity: 4064 mAh present voltage: 16608 mV */ /* 2213<@jupet�kellari��> jupet@lagi-unstable:~$ cat /proc/apm 2213<@jupet�kellari��> 1.16 1.2 0x03 0x01 0xff 0x10 -1% -1 ? 2213<@jupet�kellari��> (-1 ollee ei akkua kiinni, koska akku on p�yd�ll�) 2214<@jupet�kellari��> jupet@lagi-unstable:~$ cat /proc/apm 2214<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x03 0x09 98% -1 ? 2238<@jupet�kellari��> 1.16 1.2 0x03 0x00 0x00 0x01 100% -1 ? ilman verkkovirtaa 2239<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x00 0x01 99% -1 ? verkkovirralla 2240<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x03 0x09 100% -1 ? verkkovirralla ja monitori p��ll� 2241<@jupet�kellari��> 1.16 1.2 0x03 0x00 0x00 0x01 99% -1 ? monitori p��ll� mutta ilman verkkovirtaa */ /* Kapil Hari Paranjape Linux 2.6.24 onwards battery info is in /sys/class/power_supply/BAT0/ On my system I get the following. /sys/class/power_supply/BAT0/uevent: PHYSDEVPATH=/devices/LNXSYSTM:00/device:00/PNP0A03:00/device:01/PNP0C09:00/PNP0C0A:00 PHYSDEVBUS=acpi PHYSDEVDRIVER=battery POWER_SUPPLY_NAME=BAT0 POWER_SUPPLY_TYPE=Battery POWER_SUPPLY_STATUS=Discharging POWER_SUPPLY_PRESENT=1 POWER_SUPPLY_TECHNOLOGY=Li-ion POWER_SUPPLY_VOLTAGE_MIN_DESIGN=10800000 POWER_SUPPLY_VOLTAGE_NOW=10780000 POWER_SUPPLY_CURRENT_NOW=13970000 POWER_SUPPLY_ENERGY_FULL_DESIGN=47510000 POWER_SUPPLY_ENERGY_FULL=27370000 POWER_SUPPLY_ENERGY_NOW=11810000 POWER_SUPPLY_MODEL_NAME=IBM-92P1060 POWER_SUPPLY_MANUFACTURER=Panasonic On some systems POWER_SUPPLY_ENERGY_* is replaced by POWER_SUPPLY_CHARGE_* */ #define SYSFS_BATTERY_BASE_PATH "/sys/class/power_supply" #define ACPI_BATTERY_BASE_PATH "/proc/acpi/battery" #define APM_PATH "/proc/apm" #define MAX_BATTERY_COUNT 4 static FILE *sysfs_bat_fp[MAX_BATTERY_COUNT]; static FILE *acpi_bat_fp[MAX_BATTERY_COUNT]; static FILE *apm_bat_fp[MAX_BATTERY_COUNT]; static int batteries_initialized = 0; static char batteries[MAX_BATTERY_COUNT][32]; static int acpi_last_full[MAX_BATTERY_COUNT]; static int acpi_design_capacity[MAX_BATTERY_COUNT]; /* e.g. "charging 75%" */ static char last_battery_str[MAX_BATTERY_COUNT][64]; /* e.g. "3h 15m" */ static char last_battery_time_str[MAX_BATTERY_COUNT][64]; static double last_battery_time[MAX_BATTERY_COUNT]; static int last_battery_perct[MAX_BATTERY_COUNT]; static double last_battery_perct_time[MAX_BATTERY_COUNT]; void init_batteries(void) { int idx; if (batteries_initialized) { return; } for (idx = 0; idx < MAX_BATTERY_COUNT; idx++) { batteries[idx][0] = '\0'; } batteries_initialized = 1; } int get_battery_idx(const char *bat) { int idx; for (idx = 0; idx < MAX_BATTERY_COUNT; idx++) { if (!strlen(batteries[idx]) || !strcmp(batteries[idx], bat)) { break; } } /* if not found, enter a new entry */ if (!strlen(batteries[idx])) { snprintf(batteries[idx], 31, "%s", bat); } return idx; } void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item) { static int idx, rep = 0, rep2 = 0; char acpi_path[128]; snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat); char sysfs_path[128]; snprintf(sysfs_path, 127, SYSFS_BATTERY_BASE_PATH "/%s/uevent", bat); init_batteries(); idx = get_battery_idx(bat); /* don't update battery too often */ if (current_update_time - last_battery_time[idx] < 29.5) { goto set_return_value; } last_battery_time[idx] = current_update_time; memset(last_battery_str[idx], 0, sizeof(last_battery_str[idx])); memset(last_battery_time_str[idx], 0, sizeof(last_battery_time_str[idx])); /* first try SYSFS if that fails try ACPI */ if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) sysfs_bat_fp[idx] = open_file(sysfs_path, &rep); if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) acpi_bat_fp[idx] = open_file(acpi_path, &rep); if (sysfs_bat_fp[idx] != NULL) { /* SYSFS */ int present_rate = -1; int remaining_capacity = -1; char charging_state[64]; char present[4]; strcpy(charging_state, "Unknown"); while (!feof(sysfs_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, sysfs_bat_fp[idx]) == NULL) break; /* let's just hope units are ok */ if (strncmp (buf, "POWER_SUPPLY_PRESENT=1", 22) == 0) strcpy(present, "Yes"); else if (strncmp (buf, "POWER_SUPPLY_PRESENT=0", 22) == 0) strcpy(present, "No"); else if (strncmp (buf, "POWER_SUPPLY_STATUS=", 20) == 0) sscanf(buf, "POWER_SUPPLY_STATUS=%63s", charging_state); /* present_rate is not the same as the current flowing now but it is the same value which was used in the past. so we continue the tradition! */ else if (strncmp(buf, "POWER_SUPPLY_CURRENT_NOW=", 25) == 0) sscanf(buf, "POWER_SUPPLY_CURRENT_NOW=%d", &present_rate); else if (strncmp(buf, "POWER_SUPPLY_ENERGY_NOW=", 24) == 0) sscanf(buf, "POWER_SUPPLY_ENERGY_NOW=%d", &remaining_capacity); else if (strncmp(buf, "POWER_SUPPLY_ENERGY_FULL=", 25) == 0) sscanf(buf, "POWER_SUPPLY_ENERGY_FULL=%d", &acpi_last_full[idx]); else if (strncmp(buf, "POWER_SUPPLY_CHARGE_NOW=", 24) == 0) sscanf(buf, "POWER_SUPPLY_CHARGE_NOW=%d", &remaining_capacity); else if (strncmp(buf, "POWER_SUPPLY_CHARGE_FULL=", 25) == 0) sscanf(buf, "POWER_SUPPLY_CHARGE_FULL=%d", &acpi_last_full[idx]); } fclose(sysfs_bat_fp[idx]); sysfs_bat_fp[idx] = NULL; /* Hellf[i]re notes that remaining capacity can exceed acpi_last_full */ if (remaining_capacity > acpi_last_full[idx]) acpi_last_full[idx] = remaining_capacity; /* normalize to 100% */ /* not present */ if (strcmp(present, "No") == 0) { strncpy(last_battery_str[idx], "not present", 64); } /* charging */ else if (strcmp(charging_state, "Charging") == 0) { if (acpi_last_full[idx] != 0 && present_rate > 0) { /* e.g. charging 75% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "Charging %i%%", (int) (((float) remaining_capacity / acpi_last_full[idx]) * 100 )); /* e.g. 2h 37m */ format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx])-1, (long) (((float)(acpi_last_full[idx] - remaining_capacity) / present_rate) * 3600)); } else if (acpi_last_full[idx] != 0 && present_rate <= 0) { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "Charging %d%%", (int) (((float)remaining_capacity / acpi_last_full[idx]) * 100)); } else { strncpy(last_battery_str[idx], "Charging", sizeof(last_battery_str[idx])-1); } } /* discharging */ else if (strncmp(charging_state, "Discharging", 64) == 0) { if (present_rate > 0) { /* e.g. discharging 35% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "Discharging %i%%", (int) (((float) remaining_capacity / acpi_last_full[idx]) * 100 )); /* e.g. 1h 12m */ format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx])-1, (long) (((float)(acpi_last_full[idx] - remaining_capacity) / present_rate) * 3600)); } else if (present_rate == 0) { /* Thanks to Nexox for this one */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "Full"); } else { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "Discharging %d%%", (int) (((float)remaining_capacity / acpi_last_full[idx]) * 100)); } } /* charged */ /* thanks to Lukas Zapletal */ else if (strncmp(charging_state, "Charged", 64) == 0) { /* Below happens with the second battery on my X40, * when the second one is empty and the first one * being charged. */ if (remaining_capacity == 0) strcpy(last_battery_str[idx], "Empty"); else strcpy(last_battery_str[idx], "Charged"); } /* unknown, probably full / AC */ else { if (acpi_last_full[idx] != 0 && remaining_capacity != acpi_last_full[idx]) snprintf(last_battery_str[idx], 64, "Unknown %d%%", (int) (((float)remaining_capacity / acpi_last_full[idx]) * 100)); else strncpy(last_battery_str[idx], "AC", 64); } } else if (acpi_bat_fp[idx] != NULL) { /* ACPI */ int present_rate = -1; int remaining_capacity = -1; char charging_state[64]; char present[4]; /* read last full capacity if it's zero */ if (acpi_last_full[idx] == 0) { static int rep = 0; char path[128]; FILE *fp; snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat); fp = open_file(path, &rep); if (fp != NULL) { while (!feof(fp)) { char b[256]; if (fgets(b, 256, fp) == NULL) { break; } if (sscanf(b, "last full capacity: %d", &acpi_last_full[idx]) != 0) { break; } } fclose(fp); } } fseek(acpi_bat_fp[idx], 0, SEEK_SET); strcpy(charging_state, "unknown"); while (!feof(acpi_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, acpi_bat_fp[idx]) == NULL) { break; } /* let's just hope units are ok */ if (strncmp(buf, "present:", 8) == 0) { sscanf(buf, "present: %4s", present); } else if (strncmp(buf, "charging state:", 15) == 0) { sscanf(buf, "charging state: %63s", charging_state); } else if (strncmp(buf, "present rate:", 13) == 0) { sscanf(buf, "present rate: %d", &present_rate); } else if (strncmp(buf, "remaining capacity:", 19) == 0) { sscanf(buf, "remaining capacity: %d", &remaining_capacity); } } /* Hellf[i]re notes that remaining capacity can exceed acpi_last_full */ if (remaining_capacity > acpi_last_full[idx]) { /* normalize to 100% */ acpi_last_full[idx] = remaining_capacity; } /* not present */ if (strcmp(present, "no") == 0) { strncpy(last_battery_str[idx], "not present", 64); /* charging */ } else if (strcmp(charging_state, "charging") == 0) { if (acpi_last_full[idx] != 0 && present_rate > 0) { /* e.g. charging 75% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "charging %i%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); /* e.g. 2h 37m */ format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, (long) (((acpi_last_full[idx] - remaining_capacity) * 3600) / present_rate)); } else if (acpi_last_full[idx] != 0 && present_rate <= 0) { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "charging %d%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); } else { strncpy(last_battery_str[idx], "charging", sizeof(last_battery_str[idx]) - 1); } /* discharging */ } else if (strncmp(charging_state, "discharging", 64) == 0) { if (present_rate > 0) { /* e.g. discharging 35% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "discharging %i%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); /* e.g. 1h 12m */ format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, (long) ((remaining_capacity * 3600) / present_rate)); } else if (present_rate == 0) { /* Thanks to Nexox for this one */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "full"); } else { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "discharging %d%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); } /* charged */ } else if (strncmp(charging_state, "charged", 64) == 0) { /* thanks to Lukas Zapletal */ /* Below happens with the second battery on my X40, * when the second one is empty and the first one being charged. */ if (remaining_capacity == 0) { strcpy(last_battery_str[idx], "empty"); } else { strcpy(last_battery_str[idx], "charged"); } /* unknown, probably full / AC */ } else { if (acpi_last_full[idx] != 0 && remaining_capacity != acpi_last_full[idx]) { snprintf(last_battery_str[idx], 64, "unknown %d%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); } else { strncpy(last_battery_str[idx], "AC", 64); } } } else { /* APM */ if (apm_bat_fp[idx] == NULL) { apm_bat_fp[idx] = open_file(APM_PATH, &rep2); } if (apm_bat_fp[idx] != NULL) { int ac, status, flag, life; fscanf(apm_bat_fp[idx], "%*s %*s %*x %x %x %x %d%%", &ac, &status, &flag, &life); if (life == -1) { /* could check now that there is ac */ snprintf(last_battery_str[idx], 64, "AC"); /* could check that status == 3 here? */ } else if (ac && life != 100) { snprintf(last_battery_str[idx], 64, "charging %d%%", life); } else { snprintf(last_battery_str[idx], 64, "%d%%", life); } /* it seemed to buffer it so file must be closed (or could use * syscalls directly but I don't feel like coding it now) */ fclose(apm_bat_fp[idx]); apm_bat_fp[idx] = NULL; } } set_return_value: switch (item) { case BATTERY_STATUS: snprintf(buf, n, "%s", last_battery_str[idx]); break; case BATTERY_TIME: snprintf(buf, n, "%s", last_battery_time_str[idx]); break; default: break; } } int get_battery_perct(const char *bat) { static int rep; int idx; char acpi_path[128]; snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat); char sysfs_path[128]; snprintf(sysfs_path, 127, SYSFS_BATTERY_BASE_PATH "/%s/uevent", bat); init_batteries(); idx = get_battery_idx(bat); /* don't update battery too often */ if (current_update_time - last_battery_perct_time[idx] < 30) { return last_battery_perct[idx]; } last_battery_perct_time[idx] = current_update_time; /* Only check for SYSFS or ACPI */ if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) sysfs_bat_fp[idx] = open_file(sysfs_path, &rep); if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) acpi_bat_fp[idx] = open_file(acpi_path, &rep); int remaining_capacity = -1; if (sysfs_bat_fp[idx] != NULL) { /* SYSFS */ while (!feof(sysfs_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, sysfs_bat_fp[idx]) == NULL) break; if (strncmp(buf, "POWER_SUPPLY_CHARGE_NOW=", 24) == 0) { sscanf(buf, "POWER_SUPPLY_CHARGE_NOW=%d", &remaining_capacity); } else if (strncmp(buf, "POWER_SUPPLY_CHARGE_FULL=",25) == 0) { sscanf(buf, "POWER_SUPPLY_CHARGE_FULL=%d", &acpi_design_capacity[idx]); } else if (strncmp(buf, "POWER_SUPPLY_ENERGY_NOW=", 24) == 0) { sscanf(buf, "POWER_SUPPLY_ENERGY_NOW=%d", &remaining_capacity); } else if (strncmp(buf, "POWER_SUPPLY_ENERGY_FULL=",25) == 0) { sscanf(buf, "POWER_SUPPLY_ENERGY_FULL=%d", &acpi_design_capacity[idx]); } } fclose(sysfs_bat_fp[idx]); sysfs_bat_fp[idx] = NULL; } else if (acpi_bat_fp[idx] != NULL) { /* ACPI */ /* read last full capacity if it's zero */ if (acpi_design_capacity[idx] == 0) { static int rep; char path[128]; FILE *fp; snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat); fp = open_file(path, &rep); if (fp != NULL) { while (!feof(fp)) { char b[256]; if (fgets(b, 256, fp) == NULL) { break; } if (sscanf(b, "last full capacity: %d", &acpi_design_capacity[idx]) != 0) { break; } } fclose(fp); } } fseek(acpi_bat_fp[idx], 0, SEEK_SET); while (!feof(acpi_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, acpi_bat_fp[idx]) == NULL) { break; } if (buf[0] == 'r') { sscanf(buf, "remaining capacity: %d", &remaining_capacity); } } } if (remaining_capacity < 0) { return 0; } /* compute the battery percentage */ last_battery_perct[idx] = (int) (((float) remaining_capacity / acpi_design_capacity[idx]) * 100); return last_battery_perct[idx]; } int get_battery_perct_bar(const char *bar) { int idx; get_battery_perct(bar); idx = get_battery_idx(bar); return (int) (last_battery_perct[idx] * 2.56 - 1); } /* On Apple powerbook and ibook: $ cat /proc/pmu/battery_0 flags : 00000013 charge : 3623 max_charge : 3720 current : 388 voltage : 16787 time rem. : 900 $ cat /proc/pmu/info PMU driver version : 2 PMU firmware version : 0c AC Power : 1 Battery count : 1 */ /* defines as in */ #define PMU_BATT_PRESENT 0x00000001 #define PMU_BATT_CHARGING 0x00000002 static FILE *pmu_battery_fp; static FILE *pmu_info_fp; static char pb_battery_info[3][32]; static double pb_battery_info_update; #define PMU_PATH "/proc/pmu" void get_powerbook_batt_info(char *buf, size_t n, int i) { static int rep = 0; const char *batt_path = PMU_PATH "/battery_0"; const char *info_path = PMU_PATH "/info"; int flags, charge, max_charge, ac = -1; long time = -1; /* don't update battery too often */ if (current_update_time - pb_battery_info_update < 29.5) { snprintf(buf, n, "%s", pb_battery_info[i]); return; } pb_battery_info_update = current_update_time; if (pmu_battery_fp == NULL) { pmu_battery_fp = open_file(batt_path, &rep); } if (pmu_battery_fp != NULL) { rewind(pmu_battery_fp); while (!feof(pmu_battery_fp)) { char buf[32]; if (fgets(buf, sizeof(buf), pmu_battery_fp) == NULL) { break; } if (buf[0] == 'f') { sscanf(buf, "flags : %8x", &flags); } else if (buf[0] == 'c' && buf[1] == 'h') { sscanf(buf, "charge : %d", &charge); } else if (buf[0] == 'm') { sscanf(buf, "max_charge : %d", &max_charge); } else if (buf[0] == 't') { sscanf(buf, "time rem. : %ld", &time); } } } if (pmu_info_fp == NULL) { pmu_info_fp = open_file(info_path, &rep); } if (pmu_info_fp != NULL) { rewind(pmu_info_fp); while (!feof(pmu_info_fp)) { char buf[32]; if (fgets(buf, sizeof(buf), pmu_info_fp) == NULL) { break; } if (buf[0] == 'A') { sscanf(buf, "AC Power : %d", &ac); } } } /* update status string */ if ((ac && !(flags & PMU_BATT_PRESENT))) { strcpy(pb_battery_info[PB_BATT_STATUS], "AC"); } else if (ac && (flags & PMU_BATT_PRESENT) && !(flags & PMU_BATT_CHARGING)) { strcpy(pb_battery_info[PB_BATT_STATUS], "charged"); } else if ((flags & PMU_BATT_PRESENT) && (flags & PMU_BATT_CHARGING)) { strcpy(pb_battery_info[PB_BATT_STATUS], "charging"); } else { strcpy(pb_battery_info[PB_BATT_STATUS], "discharging"); } /* update percentage string */ if (time == 0) { pb_battery_info[PB_BATT_PERCENT][0] = 0; } else { snprintf(pb_battery_info[PB_BATT_PERCENT], sizeof(pb_battery_info[PB_BATT_PERCENT]), "%d%%", (charge * 100) / max_charge); } /* update time string */ if (time == 0) { /* fully charged or battery not present */ pb_battery_info[PB_BATT_TIME][0] = 0; } else if (time < 60 * 60) { /* don't show secs */ format_seconds_short(pb_battery_info[PB_BATT_TIME], sizeof(pb_battery_info[PB_BATT_TIME]), time); } else { format_seconds(pb_battery_info[PB_BATT_TIME], sizeof(pb_battery_info[PB_BATT_TIME]), time); } snprintf(buf, n, "%s", pb_battery_info[i]); } void update_top() { show_nice_processes = 1; process_find_top(info.cpu, info.memu); info.first_process = get_first_process(); } /* The following ifdefs were adapted from gkrellm */ #include #if !defined(MD_MAJOR) #define MD_MAJOR 9 #endif #if !defined(LVM_BLK_MAJOR) #define LVM_BLK_MAJOR 58 #endif #if !defined(NBD_MAJOR) #define NBD_MAJOR 43 #endif void update_diskio() { static unsigned int last = UINT_MAX; static unsigned int last_read = UINT_MAX; static unsigned int last_write = UINT_MAX; FILE *fp; static int rep = 0; char buf[512], devbuf[64]; int major, minor, i; unsigned int current = 0; unsigned int current_read = 0; unsigned int current_write = 0; unsigned int reads, writes = 0; int col_count = 0; if (!(fp = open_file("/proc/diskstats", &rep))) { diskio_value = 0; return; } /* read reads and writes from all disks (minor = 0), including cd-roms * and floppies, and sum them up */ while (!feof(fp)) { fgets(buf, 512, fp); col_count = sscanf(buf, "%u %u %s %*u %*u %u %*u %*u %*u %u", &major, &minor, devbuf, &reads, &writes); /* ignore subdevices (they have only 3 matching entries in their line) * and virtual devices (LVM, network block devices, RAM disks, Loopback) * * XXX: ignore devices which are part of a SW RAID (MD_MAJOR) */ if (col_count == 5 && major != LVM_BLK_MAJOR && major != NBD_MAJOR && major != RAMDISK_MAJOR && major != LOOP_MAJOR) { current += reads + writes; current_read += reads; current_write += writes; } else { col_count = sscanf(buf, "%u %u %s %*u %u %*u %u", &major, &minor, devbuf, &reads, &writes); if (col_count != 5) { continue; } } for (i = 0; i < MAX_DISKIO_STATS; i++) { if (diskio_stats[i].dev && strcmp(devbuf, diskio_stats[i].dev) == 0) { diskio_stats[i].current = (reads + writes - diskio_stats[i].last) / 2; diskio_stats[i].current_read = (reads - diskio_stats[i].last_read) / 2; diskio_stats[i].current_write = (writes - diskio_stats[i].last_write) / 2; if (reads + writes < diskio_stats[i].last) { diskio_stats[i].current = 0; } if (reads < diskio_stats[i].last_read) { diskio_stats[i].current_read = 0; diskio_stats[i].current = diskio_stats[i].current_write; } if (writes < diskio_stats[i].last_write) { diskio_stats[i].current_write = 0; diskio_stats[i].current = diskio_stats[i].current_read; } diskio_stats[i].last = reads + writes; diskio_stats[i].last_read = reads; diskio_stats[i].last_write = writes; } } } /* since the values in /proc/diststats are absolute, we have to substract * our last reading. The numbers stand for "sectors read", and we therefore * have to divide by two to get KB */ int tot = ((double) (current - last) / 2); int tot_read = ((double) (current_read - last_read) / 2); int tot_write = ((double) (current_write - last_write) / 2); if (last_read > current_read) { tot_read = 0; } if (last_write > current_write) { tot_write = 0; } if (last > current) { /* we hit this either if it's the very first time we run this, or * when /proc/diskstats overflows; while 0 is not correct, it's at * least not way off */ tot = 0; } last = current; last_read = current_read; last_write = current_write; diskio_value = tot; diskio_read_value = tot_read; diskio_write_value = tot_write; fclose(fp); } /* Here come the IBM ACPI-specific things. For reference, see * http://ibm-acpi.sourceforge.net/README * If IBM ACPI is installed, /proc/acpi/ibm contains the following files: bay beep bluetooth brightness cmos dock driver ecdump fan hotkey led light thermal video volume * The content of these files is described in detail in the aforementioned * README - some of them also in the following functions accessing them. * Peter Tarjan (ptarjan@citromail.hu) */ #define IBM_ACPI_DIR "/proc/acpi/ibm" /* get fan speed on IBM/Lenovo laptops running the ibm acpi. * /proc/acpi/ibm/fan looks like this (3 lines): status: disabled speed: 2944 commands: enable, disable * Peter Tarjan (ptarjan@citromail.hu) */ void get_ibm_acpi_fan(char *p_client_buffer, size_t client_buffer_size) { if (!p_client_buffer || client_buffer_size <= 0) { return; } FILE *fp; unsigned int speed = 0; char fan[128]; snprintf(fan, 127, "%s/fan", IBM_ACPI_DIR); fp = fopen(fan, "r"); if (fp != NULL) { while (!feof(fp)) { char line[256]; if (fgets(line, 255, fp) == NULL) { break; } if (sscanf(line, "speed: %d", &speed)) { break; } } } else { CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove " "ibm* from your Conky config file.", fan, strerror(errno)); } fclose(fp); snprintf(p_client_buffer, client_buffer_size, "%d", speed); } /* get the measured temperatures from the temperature sensors * on IBM/Lenovo laptops running the ibm acpi. * There are 8 values in /proc/acpi/ibm/thermal, and according to * http://ibm-acpi.sourceforge.net/README * these mean the following (at least on an IBM R51...) * 0: CPU (also on the T series laptops) * 1: Mini PCI Module (?) * 2: HDD (?) * 3: GPU (also on the T series laptops) * 4: Battery (?) * 5: N/A * 6: Battery (?) * 7: N/A * I'm not too sure about those with the question mark, but the values I'm * reading from *my* thermal file (on a T42p) look realistic for the * hdd and the battery. * #5 and #7 are always -128. * /proc/acpi/ibm/thermal looks like this (1 line): temperatures: 41 43 31 46 33 -128 29 -128 * Peter Tarjan (ptarjan@citromail.hu) */ static double last_ibm_acpi_temp_time; void get_ibm_acpi_temps() { /* don't update too often */ if (current_update_time - last_ibm_acpi_temp_time < 10.00) { return; } last_ibm_acpi_temp_time = current_update_time; /* if (!p_client_buffer || client_buffer_size <= 0) { return; } */ FILE *fp; char thermal[128]; snprintf(thermal, 127, "%s/thermal", IBM_ACPI_DIR); fp = fopen(thermal, "r"); if (fp != NULL) { while (!feof(fp)) { char line[256]; if (fgets(line, 255, fp) == NULL) { break; } if (sscanf(line, "temperatures: %d %d %d %d %d %d %d %d", &ibm_acpi.temps[0], &ibm_acpi.temps[1], &ibm_acpi.temps[2], &ibm_acpi.temps[3], &ibm_acpi.temps[4], &ibm_acpi.temps[5], &ibm_acpi.temps[6], &ibm_acpi.temps[7])) { break; } } } else { CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove " "ibm* from your Conky config file.", thermal, strerror(errno)); } fclose(fp); } /* get volume (0-14) on IBM/Lenovo laptops running the ibm acpi. * "Volume" here is none of the mixer volumes, but a "master of masters" * volume adjusted by the IBM volume keys. * /proc/acpi/ibm/fan looks like this (4 lines): level: 4 mute: off commands: up, down, mute commands: level ( is 0-15) * Peter Tarjan (ptarjan@citromail.hu) */ void get_ibm_acpi_volume(char *p_client_buffer, size_t client_buffer_size) { if (!p_client_buffer || client_buffer_size <= 0) { return; } FILE *fp; char volume[128]; snprintf(volume, 127, "%s/volume", IBM_ACPI_DIR); unsigned int vol = -1; char mute[3] = ""; fp = fopen(volume, "r"); if (fp != NULL) { while (!feof(fp)) { char line[256]; unsigned int read_vol = -1; if (fgets(line, 255, fp) == NULL) { break; } if (sscanf(line, "level: %d", &read_vol)) { vol = read_vol; continue; } if (sscanf(line, "mute: %s", mute)) { break; } } } else { CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove " "ibm* from your Conky config file.", volume, strerror(errno)); } fclose(fp); if (strcmp(mute, "on") == 0) { snprintf(p_client_buffer, client_buffer_size, "%s", "mute"); return; } else { snprintf(p_client_buffer, client_buffer_size, "%d", vol); return; } } /* static FILE *fp = NULL; */ /* get LCD brightness on IBM/Lenovo laptops running the ibm acpi. * /proc/acpi/ibm/brightness looks like this (3 lines): level: 7 commands: up, down commands: level ( is 0-7) * Peter Tarjan (ptarjan@citromail.hu) */ void get_ibm_acpi_brightness(char *p_client_buffer, size_t client_buffer_size) { if (!p_client_buffer || client_buffer_size <= 0) { return; } FILE *fp; unsigned int brightness = 0; char filename[128]; snprintf(filename, 127, "%s/brightness", IBM_ACPI_DIR); fp = fopen(filename, "r"); if (fp != NULL) { while (!feof(fp)) { char line[256]; if (fgets(line, 255, fp) == NULL) { break; } if (sscanf(line, "level: %d", &brightness)) { break; } } } else { CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove " "ibm* from your Conky config file.", filename, strerror(errno)); } fclose(fp); snprintf(p_client_buffer, client_buffer_size, "%d", brightness); } void update_entropy(void) { static int rep = 0; const char *entropy_avail = "/proc/sys/kernel/random/entropy_avail"; const char *entropy_poolsize = "/proc/sys/kernel/random/poolsize"; FILE *fp1, *fp2; info.entropy.entropy_avail = 0; info.entropy.poolsize = 0; if ((fp1 = open_file(entropy_avail, &rep)) == NULL) { return; } if ((fp2 = open_file(entropy_poolsize, &rep)) == NULL) { fclose(fp1); return; } fscanf(fp1, "%u", &info.entropy.entropy_avail); fscanf(fp2, "%u", &info.entropy.poolsize); fclose(fp1); fclose(fp2); info.mask |= (1 << INFO_ENTROPY); } char *get_disk_protect_queue(char *disk) { FILE *fp; char path[128]; int state; snprintf(path, 127, "/sys/block/%s/queue/protect", disk); if ((fp = fopen(path, "r")) == NULL) return "n/a "; if (fscanf(fp, "%d\n", &state) != 1) { fclose(fp); return "failed"; } fclose(fp); return state ? "frozen" : "free "; }