/* * Conky, a system monitor, based on torsmo * * Any original torsmo code is licensed under the BSD license * * All code written since the fork of torsmo is licensed under the GPL * * Please see COPYING for details * * Copyright (c) 2004, Hannu Saransaari and Lauri Hakkarainen * Copyright (c) 2007 Toni Spets * Copyright (c) 2005-2007 Brenden Matthews, Philip Kovacs, et. al. (see AUTHORS) * All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * $Id$ */ #include "conky.h" #include #include #include #include #include #include #include #include #include #include #ifndef HAVE_CLOCK_GETTIME #include #endif #include #include // #include #include #include "top.h" #include #include #include #include #include #include #ifdef HAVE_IWLIB #include #endif #define SHORTSTAT_TEMPL "%*s %llu %llu %llu" #define LONGSTAT_TEMPL "%*s %llu %llu %llu " static int show_nice_processes; /* this flags tells the linux routines to use the /proc system * where possible, even if other api's are available, e.g. sysinfo() * or getloadavg(). the reason for this is to allow for /proc-based * distributed monitoring. using a flag in this manner creates less * confusing code. */ static int prefer_proc = 0; void prepare_update() { } void update_uptime() { #ifdef HAVE_SYSINFO if (!prefer_proc) { struct sysinfo s_info; sysinfo(&s_info); info.uptime = (double) s_info.uptime; } else #endif { static int rep = 0; FILE *fp; if (!(fp = open_file("/proc/uptime", &rep))) { info.uptime=0.0; return; } fscanf(fp, "%lf", &info.uptime); fclose(fp); } info.mask |= (1 << INFO_UPTIME); } int check_mount(char *s) { int ret = 0; FILE *mtab = fopen("/etc/mtab", "r"); if (mtab) { char buf1[256], buf2[128]; while (fgets(buf1, 256, mtab)) { sscanf(buf1, "%*s %128s", buf2); if (!strcmp(s, buf2)) { ret = 1; break; } } fclose(mtab); } else { ERR("Could not open mtab"); } return ret; } /* these things are also in sysinfo except Buffers:, that's why I'm reading * them from proc */ void update_meminfo() { FILE *meminfo_fp; static int rep = 0; /* unsigned int a; */ char buf[256]; info.mem = info.memmax = info.swap = info.swapmax = info.bufmem = info.buffers = info.cached = 0; if (!(meminfo_fp = open_file("/proc/meminfo", &rep))) return; while (!feof(meminfo_fp)) { if (fgets(buf, 255, meminfo_fp) == NULL) break; if (strncmp(buf, "MemTotal:", 9) == 0) { sscanf(buf, "%*s %Lu", &info.memmax); } else if (strncmp(buf, "MemFree:", 8) == 0) { sscanf(buf, "%*s %Lu", &info.mem); } else if (strncmp(buf, "SwapTotal:", 10) == 0) { sscanf(buf, "%*s %Lu", &info.swapmax); } else if (strncmp(buf, "SwapFree:", 9) == 0) { sscanf(buf, "%*s %Lu", &info.swap); } else if (strncmp(buf, "Buffers:", 8) == 0) { sscanf(buf, "%*s %Lu", &info.buffers); } else if (strncmp(buf, "Cached:", 7) == 0) { sscanf(buf, "%*s %Lu", &info.cached); } } info.mem = info.memmax - info.mem; info.swap = info.swapmax - info.swap; info.bufmem = info.cached + info.buffers; info.mask |= (1 << INFO_MEM) | (1 << INFO_BUFFERS); fclose (meminfo_fp); } inline void update_net_stats() { FILE *net_dev_fp; static int rep = 0; // FIXME: arbitrary size chosen to keep code simple. int i, i2; unsigned int curtmp1, curtmp2; unsigned int k; struct ifconf conf; char buf[256]; double delta; #ifdef HAVE_IWLIB // wireless info variables int skfd, has_bitrate = 0; struct wireless_info *winfo; struct iwreq wrq; #endif /* get delta */ delta = current_update_time - last_update_time; if (delta <= 0.0001) return; /* open file and ignore first two lines */ if (!(net_dev_fp = open_file("/proc/net/dev", &rep))) { clear_net_stats (); return; } fgets(buf, 255, net_dev_fp); /* garbage */ fgets(buf, 255, net_dev_fp); /* garbage (field names) */ /* read each interface */ for (i2 = 0; i2 < 16; i2++) { struct net_stat *ns; char *s, *p; long long r, t, last_recv, last_trans; if (fgets(buf, 255, net_dev_fp) == NULL) { break; } p = buf; while (isspace((int) *p)) p++; s = p; while (*p && *p != ':') p++; if (*p == '\0') continue; *p = '\0'; p++; ns = get_net_stat(s); ns->up = 1; memset(&(ns->addr.sa_data), 0, 14); last_recv = ns->recv; last_trans = ns->trans; sscanf(p, /* bytes packets errs drop fifo frame compressed multicast|bytes ... */ "%Ld %*d %*d %*d %*d %*d %*d %*d %Ld", &r, &t); /* if recv or trans is less than last time, an overflow happened */ if (r < ns->last_read_recv) last_recv = 0; else ns->recv += (r - ns->last_read_recv); ns->last_read_recv = r; if (t < ns->last_read_trans) last_trans = 0; else ns->trans += (t - ns->last_read_trans); ns->last_read_trans = t; /*** ip addr patch ***/ i = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); conf.ifc_buf = malloc(sizeof(struct ifreq) * 16); conf.ifc_len = sizeof(struct ifreq) * 16; ioctl((long) i, SIOCGIFCONF, &conf); for (k = 0; k < conf.ifc_len / sizeof(struct ifreq); k++) { struct net_stat *ns; ns = get_net_stat(((struct ifreq *) conf. ifc_buf)[k].ifr_ifrn.ifrn_name); ns->addr = ((struct ifreq *) conf.ifc_buf)[k].ifr_ifru. ifru_addr; } close((long) i); free(conf.ifc_buf); /*** end ip addr patch ***/ /* calculate speeds */ ns->net_rec[0] = (ns->recv - last_recv) / delta; ns->net_trans[0] = (ns->trans - last_trans) / delta; curtmp1 = 0; curtmp2 = 0; // get an average for (i = 0; (unsigned) i < info.net_avg_samples; i++) { curtmp1 += ns->net_rec[i]; curtmp2 += ns->net_trans[i]; } if (curtmp1 == 0) curtmp1 = 1; if (curtmp2 == 0) curtmp2 = 1; ns->recv_speed = curtmp1 / (double) info.net_avg_samples; ns->trans_speed = curtmp2 / (double) info.net_avg_samples; if (info.net_avg_samples > 1) { for (i = info.net_avg_samples; i > 1; i--) { ns->net_rec[i - 1] = ns->net_rec[i - 2]; ns->net_trans[i - 1] = ns->net_trans[i - 2]; } } #ifdef HAVE_IWLIB /* update wireless info */ winfo = malloc(sizeof(struct wireless_info)); memset(winfo, 0, sizeof(struct wireless_info)); skfd = iw_sockets_open(); if(iw_get_basic_config(skfd, s, &(winfo->b)) > -1) { // set present winfo variables if(iw_get_stats(skfd, s, &(winfo->stats), &winfo->range, winfo->has_range) >= 0) winfo->has_stats = 1; if(iw_get_range_info(skfd, s, &(winfo->range)) >= 0) winfo->has_range = 1; if(iw_get_ext(skfd, s, SIOCGIWAP, &wrq) >= 0) { winfo->has_ap_addr = 1; memcpy(&(winfo->ap_addr), &(wrq.u.ap_addr), sizeof (sockaddr)); } // get bitrate if(iw_get_ext(skfd, s, SIOCGIWRATE, &wrq) >= 0) { memcpy(&(winfo->bitrate), &(wrq.u.bitrate), sizeof(iwparam)); iw_print_bitrate(ns->bitrate, 16, winfo->bitrate.value); has_bitrate = 1; } // get link quality if(winfo->has_range && winfo->has_stats && ((winfo->stats.qual.level != 0) || (winfo->stats.qual.updated & IW_QUAL_DBM))) { if(!(winfo->stats.qual.updated & IW_QUAL_QUAL_INVALID)) { ns->link_qual = winfo->stats.qual.qual; ns->link_qual_max = winfo->range.max_qual.qual; } } // get ap mac if(winfo->has_ap_addr) { iw_sawap_ntop(&winfo->ap_addr, ns->ap); } // get essid if(winfo->b.has_essid) { if(winfo->b.essid_on) snprintf(ns->essid, 32, "%s", winfo->b.essid); else snprintf(ns->essid, 32, "off/any"); } snprintf(ns->mode, 16, "%s", iw_operation_mode[winfo->b.mode]); } iw_sockets_close(skfd); free(winfo); #endif } fclose(net_dev_fp); info.mask |= (1 << INFO_NET); } int result; void update_total_processes() { #ifdef HAVE_SYSINFO if (!prefer_proc) { struct sysinfo s_info; sysinfo(&s_info); info.procs = s_info.procs; } else #endif { static int rep = 0; FILE *fp; if (!(fp = open_file("/proc/loadavg", &rep))) { info.procs=0; return; } fscanf(fp, "%*f %*f %*f %*d/%hd", &info.procs ); fclose(fp); } info.mask |= (1 << INFO_PROCS); } #define CPU_SAMPLE_COUNT 15 struct cpu_info { unsigned long long cpu_user; unsigned long long cpu_system; unsigned long long cpu_nice; unsigned long long cpu_idle; unsigned long long cpu_iowait; unsigned long long cpu_irq; unsigned long long cpu_softirq; unsigned long long cpu_steal; unsigned long long cpu_total; unsigned long long cpu_active_total; unsigned long long cpu_last_total; unsigned long long cpu_last_active_total; double cpu_val[CPU_SAMPLE_COUNT]; }; static short cpu_setup = 0; /* determine if this kernel gives us "extended" statistics information in /proc/stat. Kernels around 2.5 and earlier only reported user, system, nice and idle values in proc stat. Kernels around 2.6 and greater report these PLUS iowait, irq, softirq, and steal */ void determine_longstat(char * buf) { unsigned long long iowait=0; KFLAG_SETOFF(KFLAG_IS_LONGSTAT); /* scanf will either return -1 or 1 because there is only 1 assignment */ if (sscanf(buf, "%*s %*d %*d %*d %*d %llu",&iowait)>0) KFLAG_SETON(KFLAG_IS_LONGSTAT); } void get_cpu_count() { FILE *stat_fp; static int rep = 0; if (info.cpu_usage) { return; } char buf[256]; if (!(stat_fp = open_file("/proc/stat", &rep))) return; info.cpu_count = 0; while (!feof(stat_fp)) { if (fgets(buf, 255, stat_fp) == NULL) break; if (strncmp(buf, "cpu", 3) == 0 && isdigit(buf[3])) { if (info.cpu_count == 0) { determine_longstat(buf); } info.cpu_count++; } } info.cpu_usage = malloc((info.cpu_count + 1) * sizeof(float)); fclose (stat_fp); } #define TMPL_LONGSTAT "%*s %llu %llu %llu %llu %llu %llu %llu %llu" #define TMPL_SHORTSTAT "%*s %llu %llu %llu %llu" inline static void update_stat() { FILE *stat_fp; static int rep = 0; static struct cpu_info *cpu = NULL; char buf[256]; unsigned int i; unsigned int index; double curtmp; char * stat_template=NULL; unsigned int malloc_cpu_size=0; /* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */ if (!cpu_setup || !info.cpu_usage) { get_cpu_count(); cpu_setup = 1; } if (!stat_template) { stat_template = KFLAG_ISSET(KFLAG_IS_LONGSTAT) ? TMPL_LONGSTAT : TMPL_SHORTSTAT ; } if (!cpu) { malloc_cpu_size = (info.cpu_count + 1) * sizeof(struct cpu_info); cpu = malloc(malloc_cpu_size); memset(cpu, 0, malloc_cpu_size); } if (!(stat_fp = open_file("/proc/stat", &rep))) { info.run_procs=0; if (info.cpu_usage) { memset(info.cpu_usage, 0, info.cpu_count * sizeof (float)); } return; } index = 0; while (!feof(stat_fp)) { if (fgets(buf, 255, stat_fp) == NULL) break; if (strncmp(buf, "procs_running ", 14) == 0) { sscanf(buf, "%*s %hu", &info.run_procs); info.mask |= (1 << INFO_RUN_PROCS); } else if (strncmp(buf, "cpu", 3) == 0) { index = isdigit(buf[3]) ? ((int)buf[3]) - 0x2F : 0; sscanf(buf, stat_template , &(cpu[index].cpu_user) , &(cpu[index].cpu_nice) , &(cpu[index].cpu_system) , &(cpu[index].cpu_idle) , &(cpu[index].cpu_iowait) , &(cpu[index].cpu_irq) , &(cpu[index].cpu_softirq) , &(cpu[index].cpu_steal) ); cpu[index].cpu_total = cpu[index].cpu_user + cpu[index].cpu_nice + cpu[index].cpu_system + cpu[index].cpu_idle + cpu[index].cpu_iowait + cpu[index].cpu_irq + cpu[index].cpu_softirq + cpu[index].cpu_steal ; cpu[index].cpu_active_total = cpu[index].cpu_total - (cpu[index].cpu_idle + cpu[index].cpu_iowait); info.mask |= (1 << INFO_CPU); double delta = current_update_time - last_update_time; if (delta <= 0.001) break; cpu[index].cpu_val[0] = (cpu[index].cpu_active_total - cpu[index].cpu_last_active_total) / (float )(cpu[index].cpu_total - cpu[index].cpu_last_total); curtmp = 0; for (i=0; i < info.cpu_avg_samples; i++ ) { curtmp += cpu[index].cpu_val[i]; } /* TESTING -- I've removed this, because I don't think it is right. You shouldn't divide by the cpu count here ... removing for testing */ /* if (index == 0) { info.cpu_usage[index] = curtmp / info.cpu_avg_samples / info.cpu_count; } else { info.cpu_usage[index] = curtmp / info.cpu_avg_samples; } */ /* TESTING -- this line replaces the prev. "suspect" if/else */ info.cpu_usage[index] = curtmp / info.cpu_avg_samples; cpu[index].cpu_last_total = cpu[index].cpu_total; cpu[index].cpu_last_active_total = cpu[index].cpu_active_total; for (i = info.cpu_avg_samples - 1; i > 0; i--) { cpu[index].cpu_val[i] = cpu[index].cpu_val[i - 1]; } } } fclose (stat_fp); } void update_running_processes() { update_stat(); } void update_cpu_usage() { update_stat(); } void update_load_average() { #ifdef HAVE_GETLOADAVG if (!prefer_proc) { double v[3]; getloadavg(v, 3); info.loadavg[0] = (float) v[0]; info.loadavg[1] = (float) v[1]; info.loadavg[2] = (float) v[2]; } else #endif { static int rep = 0; FILE *fp; if (!(fp = open_file("/proc/loadavg", &rep))) { info.loadavg[0] = info.loadavg[1] = info.loadavg[2] = 0.0; return; } fscanf(fp, "%f %f %f", &info.loadavg[0], &info.loadavg[1], &info.loadavg[2]); fclose(fp); } info.mask |= (1 << INFO_LOADAVG); } #define PROC_I8K "/proc/i8k" #define I8K_DELIM " " static char *i8k_procbuf = NULL; void update_i8k() { FILE *fp; if (!i8k_procbuf) { i8k_procbuf = (char*)malloc(128*sizeof(char)); } if ((fp = fopen(PROC_I8K,"r")) == NULL) { CRIT_ERR("/proc/i8k doesn't exist! use insmod to make sure the kernel driver is loaded..."); } memset(&i8k_procbuf[0],0,128); if (fread(&i8k_procbuf[0],sizeof(char),128,fp) == 0) { ERR("something wrong with /proc/i8k..."); } fclose(fp); i8k.version = strtok(&i8k_procbuf[0],I8K_DELIM); i8k.bios = strtok(NULL,I8K_DELIM); i8k.serial = strtok(NULL,I8K_DELIM); i8k.cpu_temp = strtok(NULL,I8K_DELIM); i8k.left_fan_status = strtok(NULL,I8K_DELIM); i8k.right_fan_status = strtok(NULL,I8K_DELIM); i8k.left_fan_rpm = strtok(NULL,I8K_DELIM); i8k.right_fan_rpm = strtok(NULL,I8K_DELIM); i8k.ac_status = strtok(NULL,I8K_DELIM); i8k.buttons_status = strtok(NULL,I8K_DELIM); } /***********************************************************/ /***********************************************************/ /***********************************************************/ static int no_dots(const struct dirent *d) { if (d->d_name[0] == '.') return 0; return 1; } static int get_first_file_in_a_directory(const char *dir, char *s, int *rep) { struct dirent **namelist; int i, n; n = scandir(dir, &namelist, no_dots, alphasort); if (n < 0) { if (!rep || !*rep) { ERR("scandir for %s: %s", dir, strerror(errno)); if (rep) *rep = 1; } return 0; } else { if (n == 0) return 0; strncpy(s, namelist[0]->d_name, 255); s[255] = '\0'; for (i = 0; i < n; i++) free(namelist[i]); free(namelist); return 1; } } int open_sysfs_sensor(const char *dir, const char *dev, const char *type, int n, int *div, char *devtype) { char path[256]; char buf[256]; int fd; int divfd; memset (buf, 0, sizeof(buf)); /* if device is NULL or *, get first */ if (dev == NULL || strcmp(dev, "*") == 0) { static int rep = 0; if (!get_first_file_in_a_directory(dir, buf, &rep)) return -1; dev = buf; } if (strcmp (dir, "/sys/class/hwmon/")==0) { if (*buf) { /* buf holds result from get_first_file_in_a_directory() above, * e.g. "hwmon0" -- append "/device" */ strcat (buf,"/device"); } else { /* dev holds device number N as a string, * e.g. "0", -- convert to "hwmon0/device" */ sprintf (buf,"hwmon%s/device",dev); dev = buf; } } /* change vol to in */ if (strcmp(type, "vol") == 0) type = "in"; if (strcmp(type, "tempf") == 0) { snprintf(path, 255, "%s%s/%s%d_input", dir, dev, "temp", n); } else { snprintf(path, 255, "%s%s/%s%d_input", dir, dev, type, n); } strncpy(devtype, path, 255); /* open file */ fd = open(path, O_RDONLY); if (fd < 0) { CRIT_ERR("can't open '%s': %s\nplease check your device or remove this var from Conky", path, strerror(errno)); } if (strcmp(type, "in") == 0 || strcmp(type, "temp") == 0 || strcmp(type, "tempf") == 0) *div = 1; else *div = 0; /* fan does not use *_div as a read divisor */ if (strcmp("fan", type) == 0) return fd; /* test if *_div file exist, open it and use it as divisor */ if (strcmp(type, "tempf") == 0) { snprintf(path, 255, "%s%s/%s%d_div", dir, "one", "two", n); } else { snprintf(path, 255, "%s%s/%s%d_div", dir, dev, type, n); } divfd = open(path, O_RDONLY); if (divfd > 0) { /* read integer */ char divbuf[64]; unsigned int divn; divn = read(divfd, divbuf, 63); /* should read until n == 0 but I doubt that kernel will give these * in multiple pieces. :) */ divbuf[divn] = '\0'; *div = atoi(divbuf); } close(divfd); return fd; } double get_sysfs_info(int *fd, int div, char *devtype, char *type) { int val = 0; if (*fd <= 0) return 0; lseek(*fd, 0, SEEK_SET); /* read integer */ { char buf[64]; unsigned int n; n = read(*fd, buf, 63); /* should read until n == 0 but I doubt that kernel will give these * in multiple pieces. :) */ buf[n] = '\0'; val = atoi(buf); } close(*fd); /* open file */ *fd = open(devtype, O_RDONLY); if (*fd < 0) ERR("can't open '%s': %s", devtype, strerror(errno)); /* My dirty hack for computing CPU value * Filedil, from forums.gentoo.org */ /* if (strstr(devtype, "temp1_input") != NULL) return -15.096+1.4893*(val / 1000.0); */ /* divide voltage and temperature by 1000 */ /* or if any other divisor is given, use that */ if (strcmp(type, "tempf") == 0) { if (div > 1) return ((val / div + 40) * 9.0 / 5) - 40; else if (div) return ((val / 1000.0 + 40) * 9.0 / 5) - 40; else return ((val + 40) * 9.0 / 5) - 40; } else { if (div > 1) return val / div; else if (div) return val / 1000.0; else return val; } } /* Prior to kernel version 2.6.12, the CPU fan speed was available * in ADT746X_FAN_OLD, whereas later kernel versions provide this * information in ADT746X_FAN. */ #define ADT746X_FAN "/sys/devices/temperatures/sensor1_fan_speed" #define ADT746X_FAN_OLD "/sys/devices/temperatures/cpu_fan_speed" void get_adt746x_fan( char * p_client_buffer, size_t client_buffer_size ) { static int rep = 0; char adt746x_fan_state[64]; FILE *fp; if ( !p_client_buffer || client_buffer_size <= 0 ) return; if ((fp = open_file(ADT746X_FAN, &rep)) == NULL && (fp = open_file(ADT746X_FAN_OLD, &rep)) == NULL) { sprintf(adt746x_fan_state, "adt746x not found"); } else { fgets(adt746x_fan_state, sizeof(adt746x_fan_state), fp); adt746x_fan_state[strlen(adt746x_fan_state) - 1] = 0; fclose(fp); } snprintf( p_client_buffer, client_buffer_size, "%s", adt746x_fan_state ); return; } /* Prior to kernel version 2.6.12, the CPU temperature was found * in ADT746X_CPU_OLD, whereas later kernel versions provide this * information in ADT746X_CPU. */ #define ADT746X_CPU "/sys/devices/temperatures/sensor1_temperature" #define ADT746X_CPU_OLD "/sys/devices/temperatures/cpu_temperature" void get_adt746x_cpu( char * p_client_buffer, size_t client_buffer_size ) { static int rep = 0; char adt746x_cpu_state[64]; FILE *fp; if ( !p_client_buffer || client_buffer_size <= 0 ) return; if ((fp = open_file(ADT746X_CPU, &rep)) == NULL && (fp = open_file(ADT746X_CPU_OLD, &rep)) == NULL) { sprintf(adt746x_cpu_state, "adt746x not found"); } else { fscanf(fp, "%2s", adt746x_cpu_state); fclose(fp); } snprintf( p_client_buffer, client_buffer_size, "%s", adt746x_cpu_state ); return; } /* Thanks to "Walt Nelson" */ /***********************************************************************/ /* * This file is part of x86info. * (C) 2001 Dave Jones. * * Licensed under the terms of the GNU GPL License version 2. * * Estimate CPU MHz routine by Andrea Arcangeli * Small changes by David Sterba * */ #if defined(__i386) || defined(__x86_64) __inline__ unsigned long long int rdtsc() { unsigned long long int x; __asm__ volatile (".byte 0x0f, 0x31":"=A" (x)); return x; } #endif /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ void get_freq_dynamic( char * p_client_buffer, size_t client_buffer_size, char * p_format, int divisor ) { #if defined(__i386) || defined(__x86_64) struct timezone tz; struct timeval tvstart, tvstop; unsigned long long cycles[2]; /* gotta be 64 bit */ unsigned int microseconds; /* total time taken */ if ( !p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0 ) return; memset(&tz, 0, sizeof(tz)); /* get this function in cached memory */ gettimeofday(&tvstart, &tz); cycles[0] = rdtsc(); gettimeofday(&tvstart, &tz); /* we don't trust that this is any specific length of time */ usleep(100); cycles[1] = rdtsc(); gettimeofday(&tvstop, &tz); microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) + (tvstop.tv_usec - tvstart.tv_usec); snprintf( p_client_buffer, client_buffer_size, p_format, (float)((cycles[1] - cycles[0]) / microseconds) / divisor ); return; #else /* FIXME: hardwired: get freq for first cpu! this whole function needs to be rethought and redone for multi-cpu/multi-core/multi-threaded environments and arbitrary combinations thereof */ get_freq( p_client_buffer, client_buffer_size, p_format, divisor, 1 ); return; #endif } #define CPUFREQ_PREFIX "/sys/devices/system/cpu" #define CPUFREQ_POSTFIX "cpufreq/scaling_cur_freq" /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ char get_freq( char * p_client_buffer, size_t client_buffer_size, char * p_format, int divisor, unsigned int cpu ) { FILE *f; static int rep = 0; char frequency[32]; char s[256]; double freq = 0; if ( !p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0 ) return 0; if (!prefer_proc) { char current_freq_file[128]; snprintf(current_freq_file, 127, "%s/cpu%d/%s",CPUFREQ_PREFIX, cpu-1, CPUFREQ_POSTFIX); f = fopen(current_freq_file, "r"); if (f) { /* if there's a cpufreq /sys node, read the current frequency from this node; * divide by 1000 to get Mhz. */ if (fgets(s, sizeof(s), f)) { s[strlen(s)-1] = '\0'; freq = strtod(s, NULL); } fclose(f); snprintf( p_client_buffer, client_buffer_size, p_format, (freq/1000)/divisor ); return 1; } } f = open_file("/proc/cpuinfo", &rep); //open the CPU information file if (!f) { perror("Conky: Failed to access '/proc/cpuinfo' at get_freq()"); return 0; } while (fgets(s, sizeof(s), f) != NULL){ //read the file #if defined(__i386) || defined(__x86_64) if (strncmp(s, "cpu MHz", 7) == 0 && cpu == 0) { //and search for the cpu mhz #else #if defined(__alpha) if (strncmp(s, "cycle frequency [Hz]", 20) == 0 && cpu == 0) { // different on alpha #else if (strncmp(s, "clock", 5) == 0 && cpu == 0) { // this is different on ppc for some reason #endif // defined(__alpha) #endif // defined(__i386) || defined(__x86_64) strcpy(frequency, strchr(s, ':') + 2); //copy just the number #if defined(__alpha) frequency[strlen(frequency) - 6] = '\0';// strip " est.\n" freq = strtod(frequency, NULL)/1000000; // kernel reports in Hz #else frequency[strlen(frequency) - 1] = '\0'; // strip \n freq = strtod(frequency, NULL); #endif break; } if (strncmp(s, "processor", 9) == 0) { cpu--; continue; } } fclose(f); snprintf( p_client_buffer, client_buffer_size, p_format, (float)freq/divisor ); return 1; } #define CPUFREQ_VOLTAGE "cpufreq/scaling_voltages" /* return cpu voltage in mV (use divisor=1) or V (use divisor=1000) */ char get_voltage( char * p_client_buffer, size_t client_buffer_size, char * p_format, int divisor, unsigned int cpu ) { /* /sys/devices/system/cpu/cpu0/cpufreq/scaling_voltages looks something like this: # frequency voltage 1800000 1340 1600000 1292 1400000 1100 1200000 988 1000000 1116 800000 1004 600000 988 */ /* Peter Tarjan (ptarjan@citromail.hu) */ FILE *f; char s[256]; int freq = 0; int voltage = 0; char current_freq_file[128]; int freq_comp = 0; /* build the voltage file name */ cpu--; snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu, CPUFREQ_POSTFIX); if ( !p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0 ) return 0; /* read the current cpu frequency from the /sys node */ f = fopen(current_freq_file, "r"); if (f) { if (fgets(s, sizeof(s), f)) { s[strlen(s)-1] = '\0'; freq = strtod(s, NULL); } fclose(f); } else { fprintf(stderr, "Conky: Failed to access '%s' at ", current_freq_file); perror("get_voltage()"); if (f) { fclose(f); } return 0; } snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu, CPUFREQ_VOLTAGE); /* use the current cpu frequency to find the corresponding voltage */ f = fopen(current_freq_file, "r"); if (f) { while (!feof(f)) { char line[256]; if (fgets(line, 255, f) == NULL) break; sscanf(line, "%d %d", &freq_comp, &voltage); if(freq_comp == freq) break; } fclose(f); } else { fprintf(stderr, "Conky: Failed to access '%s' at ", current_freq_file); perror("get_voltage()"); if (f) { fclose(f); } return 0; } snprintf( p_client_buffer, client_buffer_size, p_format, (float)voltage/divisor ); return 1; } #define ACPI_FAN_DIR "/proc/acpi/fan/" void get_acpi_fan( char * p_client_buffer, size_t client_buffer_size ) { static int rep = 0; char buf[256]; char buf2[256]; FILE *fp; if ( !p_client_buffer || client_buffer_size <= 0 ) return; /* yeah, slow... :/ */ if (!get_first_file_in_a_directory(ACPI_FAN_DIR, buf, &rep)) { snprintf( p_client_buffer, client_buffer_size, "no fans?" ); return; } snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_FAN_DIR, buf ); fp = open_file(buf2, &rep); if (!fp) { snprintf( p_client_buffer, client_buffer_size, "can't open fan's state file" ); return; } memset(buf,0,sizeof(buf)); fscanf(fp, "%*s %99s", buf); fclose(fp); snprintf( p_client_buffer, client_buffer_size, "%s", buf ); return; } #define ACPI_AC_ADAPTER_DIR "/proc/acpi/ac_adapter/" void get_acpi_ac_adapter( char * p_client_buffer, size_t client_buffer_size ) { static int rep = 0; char buf[256]; char buf2[256]; FILE *fp; if ( !p_client_buffer || client_buffer_size <= 0 ) return; /* yeah, slow... :/ */ if (!get_first_file_in_a_directory(ACPI_AC_ADAPTER_DIR, buf, &rep)) { snprintf( p_client_buffer, client_buffer_size, "no ac_adapters?" ); return; } snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_AC_ADAPTER_DIR, buf ); fp = open_file(buf2, &rep); if (!fp) { snprintf( p_client_buffer, client_buffer_size, "No ac adapter found.... where is it?" ); return; } memset(buf,0,sizeof(buf)); fscanf(fp, "%*s %99s", buf ); fclose(fp); snprintf( p_client_buffer, client_buffer_size, "%s", buf ); return; } /* /proc/acpi/thermal_zone/THRM/cooling_mode cooling mode: active /proc/acpi/thermal_zone/THRM/polling_frequency /proc/acpi/thermal_zone/THRM/state state: ok /proc/acpi/thermal_zone/THRM/temperature temperature: 45 C /proc/acpi/thermal_zone/THRM/trip_points critical (S5): 73 C passive: 73 C: tc1=4 tc2=3 tsp=40 devices=0xcdf6e6c0 */ #define ACPI_THERMAL_DIR "/proc/acpi/thermal_zone/" #define ACPI_THERMAL_FORMAT "/proc/acpi/thermal_zone/%s/temperature" int open_acpi_temperature(const char *name) { char path[256]; char buf[256]; int fd; if (name == NULL || strcmp(name, "*") == 0) { static int rep = 0; if (!get_first_file_in_a_directory (ACPI_THERMAL_DIR, buf, &rep)) return -1; name = buf; } snprintf(path, 255, ACPI_THERMAL_FORMAT, name); fd = open(path, O_RDONLY); if (fd < 0) ERR("can't open '%s': %s", path, strerror(errno)); return fd; } static double last_acpi_temp; static double last_acpi_temp_time; double get_acpi_temperature(int fd) { if (fd <= 0) return 0; /* don't update acpi temperature too often */ if (current_update_time - last_acpi_temp_time < 11.32) { return last_acpi_temp; } last_acpi_temp_time = current_update_time; /* seek to beginning */ lseek(fd, 0, SEEK_SET); /* read */ { char buf[256]; int n; n = read(fd, buf, 255); if (n < 0) ERR("can't read fd %d: %s", fd, strerror(errno)); else { buf[n] = '\0'; sscanf(buf, "temperature: %lf", &last_acpi_temp); } } return last_acpi_temp; } /* hipo@lepakko hipo $ cat /proc/acpi/battery/BAT1/info present: yes design capacity: 4400 mAh last full capacity: 4064 mAh battery technology: rechargeable design voltage: 14800 mV design capacity warning: 300 mAh design capacity low: 200 mAh capacity granularity 1: 32 mAh capacity granularity 2: 32 mAh model number: 02KT serial number: 16922 battery type: LION OEM info: SANYO */ /* hipo@lepakko conky $ cat /proc/acpi/battery/BAT1/state present: yes capacity state: ok charging state: unknown present rate: 0 mA remaining capacity: 4064 mAh present voltage: 16608 mV */ /* 2213<@jupet kellari ö> jupet@lagi-unstable:~$ cat /proc/apm 2213<@jupet kellari ö> 1.16 1.2 0x03 0x01 0xff 0x10 -1% -1 ? 2213<@jupet kellari ö> (-1 ollee ei akkua kiinni, koska akku on pöydällä) 2214<@jupet kellari ö> jupet@lagi-unstable:~$ cat /proc/apm 2214<@jupet kellari ö> 1.16 1.2 0x03 0x01 0x03 0x09 98% -1 ? 2238<@jupet kellari ö> 1.16 1.2 0x03 0x00 0x00 0x01 100% -1 ? ilman verkkovirtaa 2239<@jupet kellari ö> 1.16 1.2 0x03 0x01 0x00 0x01 99% -1 ? verkkovirralla 2240<@jupet kellari ö> 1.16 1.2 0x03 0x01 0x03 0x09 100% -1 ? verkkovirralla ja monitori päällä 2241<@jupet kellari ö> 1.16 1.2 0x03 0x00 0x00 0x01 99% -1 ? monitori päällä mutta ilman verkkovirtaa */ #define ACPI_BATTERY_BASE_PATH "/proc/acpi/battery" #define APM_PATH "/proc/apm" #define MAX_BATTERY_COUNT 4 static FILE *acpi_bat_fp[MAX_BATTERY_COUNT]; static FILE *apm_bat_fp[MAX_BATTERY_COUNT]; static int batteries_initialized = 0; static char batteries[MAX_BATTERY_COUNT][32]; static int acpi_last_full[MAX_BATTERY_COUNT]; static int acpi_design_capacity[MAX_BATTERY_COUNT]; static char last_battery_str[MAX_BATTERY_COUNT][64]; /* e.g. "charging 75%" */ static char last_battery_time_str[MAX_BATTERY_COUNT][64]; /* e.g. "3h 15m" */ static double last_battery_time[MAX_BATTERY_COUNT]; static int last_battery_perct[MAX_BATTERY_COUNT]; static double last_battery_perct_time[MAX_BATTERY_COUNT]; void init_batteries(void) { int idx; if(batteries_initialized) return; for(idx = 0; idx < MAX_BATTERY_COUNT; idx++) batteries[idx][0] = '\0'; batteries_initialized = 1; } int get_battery_idx(const char *bat) { int idx; for(idx = 0; idx < MAX_BATTERY_COUNT; idx++) if(!strlen(batteries[idx]) || !strcmp(batteries[idx], bat)) break; /* if not found, enter a new entry */ if(!strlen(batteries[idx])) snprintf(batteries[idx], 31, "%s", bat); return idx; } void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item) { static int idx, rep = 0, rep2 = 0; char acpi_path[128]; snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat); init_batteries(); idx = get_battery_idx(bat); /* don't update battery too often */ if (current_update_time - last_battery_time[idx] < 29.5) goto set_return_value; last_battery_time[idx] = current_update_time; memset (last_battery_str[idx], 0, sizeof (last_battery_str[idx])); memset (last_battery_time_str[idx], 0, sizeof (last_battery_time_str[idx])); /* first try ACPI */ if (acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) acpi_bat_fp[idx] = open_file(acpi_path, &rep); if (acpi_bat_fp[idx] != NULL) { int present_rate = -1; int remaining_capacity = -1; char charging_state[64]; char present[4]; /* read last full capacity if it's zero */ if (acpi_last_full[idx] == 0) { static int rep = 0; char path[128]; FILE *fp; snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat); fp = open_file(path, &rep); if (fp != NULL) { while (!feof(fp)) { char b[256]; if (fgets(b, 256, fp) == NULL) break; if (sscanf(b, "last full capacity: %d", &acpi_last_full[idx]) != 0) { break; } } fclose(fp); } } fseek(acpi_bat_fp[idx], 0, SEEK_SET); strcpy(charging_state, "unknown"); while (!feof(acpi_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, acpi_bat_fp[idx]) == NULL) break; /* let's just hope units are ok */ if (strncmp (buf, "present:", 8) == 0) sscanf(buf, "present: %4s", present); else if (strncmp (buf, "charging state:", 15) == 0) sscanf(buf, "charging state: %63s", charging_state); else if (strncmp (buf, "present rate:", 13) == 0) sscanf(buf, "present rate: %d", &present_rate); else if (strncmp(buf, "remaining capacity:", 19) == 0) sscanf(buf, "remaining capacity: %d", &remaining_capacity); } /* Hellf[i]re notes that remaining capacity can exceed acpi_last_full */ if (remaining_capacity > acpi_last_full[idx]) acpi_last_full[idx] = remaining_capacity; /* normalize to 100% */ /* not present */ if (strcmp(present, "no") == 0) { strncpy(last_battery_str[idx], "not present", 64); } /* charging */ else if (strcmp(charging_state, "charging") == 0) { if (acpi_last_full[idx] != 0 && present_rate > 0) { /* e.g. charging 75% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "charging %i%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); /* e.g. 2h 37m */ format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx])-1, (long) (((acpi_last_full[idx] - remaining_capacity) * 3600) / present_rate)); } else if (acpi_last_full[idx] != 0 && present_rate <= 0) { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "charging %d%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); } else { strncpy(last_battery_str[idx], "charging", sizeof(last_battery_str[idx])-1); } } /* discharging */ else if (strncmp(charging_state, "discharging", 64) == 0) { if (present_rate > 0) { /* e.g. discharging 35% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "discharging %i%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); /* e.g. 1h 12m */ format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx])-1, (long) ((remaining_capacity * 3600) / present_rate)); } else if (present_rate == 0) { /* Thanks to Nexox for this one */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "full"); } else { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "discharging %d%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); } } /* charged */ /* thanks to Lukas Zapletal */ else if (strncmp(charging_state, "charged", 64) == 0) { /* Below happens with the second battery on my X40, * when the second one is empty and the first one * being charged. */ if (remaining_capacity == 0) strcpy(last_battery_str[idx], "empty"); else strcpy(last_battery_str[idx], "charged"); } /* unknown, probably full / AC */ else { if (acpi_last_full[idx] != 0 && remaining_capacity != acpi_last_full[idx]) snprintf(last_battery_str[idx], 64, "unknown %d%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); else strncpy(last_battery_str[idx], "AC", 64); } } else { /* APM */ if (apm_bat_fp[idx] == NULL) apm_bat_fp[idx] = open_file(APM_PATH, &rep2); if (apm_bat_fp[idx] != NULL) { int ac, status, flag, life; fscanf(apm_bat_fp[idx], "%*s %*s %*x %x %x %x %d%%", &ac, &status, &flag, &life); if (life == -1) { /* could check now that there is ac */ snprintf(last_battery_str[idx], 64, "AC"); } else if (ac && life != 100) { /* could check that status==3 here? */ snprintf(last_battery_str[idx], 64, "charging %d%%", life); } else { snprintf(last_battery_str[idx], 64, "%d%%", life); } /* it seemed to buffer it so file must be closed (or could use syscalls * directly but I don't feel like coding it now) */ fclose(apm_bat_fp[idx]); apm_bat_fp[idx] = NULL; } } set_return_value: switch (item) { case BATTERY_STATUS: { snprintf(buf, n, "%s", last_battery_str[idx]); break; } case BATTERY_TIME: { snprintf(buf, n, "%s", last_battery_time_str[idx]); break; } default: break; } return; } int get_battery_perct(const char *bat) { static int rep; int idx; char acpi_path[128]; snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat); init_batteries(); idx = get_battery_idx(bat); /* don't update battery too often */ if (current_update_time - last_battery_perct_time[idx] < 30) { return last_battery_perct[idx]; } last_battery_perct_time[idx] = current_update_time; /* Only check for ACPI */ if (acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) acpi_bat_fp[idx] = open_file(acpi_path, &rep); int remaining_capacity = -1; if (acpi_bat_fp[idx] != NULL) { /* read last full capacity if it's zero */ if (acpi_design_capacity[idx] == 0) { static int rep; char path[128]; FILE *fp; snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat); fp = open_file(path, &rep); if (fp != NULL) { while (!feof(fp)) { char b[256]; if (fgets(b, 256, fp) == NULL) break; if (sscanf(b, "last full capacity: %d", &acpi_design_capacity[idx]) != 0) { break; } } fclose(fp); } } fseek(acpi_bat_fp[idx], 0, SEEK_SET); while (!feof(acpi_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, acpi_bat_fp[idx]) == NULL) break; if (buf[0] == 'r') sscanf(buf, "remaining capacity: %d", &remaining_capacity); } } if(remaining_capacity < 0) return 0; /* compute the battery percentage */ last_battery_perct[idx] = (int) (((float)remaining_capacity/acpi_design_capacity[idx]) * 100); return last_battery_perct[idx]; } int get_battery_perct_bar(const char *bar) { int idx; get_battery_perct(bar); idx = get_battery_idx(bar); return (int) (last_battery_perct[idx] * 2.56 - 1); } /* On Apple powerbook and ibook: $ cat /proc/pmu/battery_0 flags : 00000013 charge : 3623 max_charge : 3720 current : 388 voltage : 16787 time rem. : 900 $ cat /proc/pmu/info PMU driver version : 2 PMU firmware version : 0c AC Power : 1 Battery count : 1 */ /* defines as in */ #define PMU_BATT_PRESENT 0x00000001 #define PMU_BATT_CHARGING 0x00000002 static FILE* pmu_battery_fp; static FILE* pmu_info_fp; static char pb_battery_info[3][32]; static double pb_battery_info_update; #define PMU_PATH "/proc/pmu" void get_powerbook_batt_info(char *buf, size_t n, int i) { static int rep = 0; const char* batt_path = PMU_PATH "/battery_0"; const char* info_path = PMU_PATH "/info"; int flags, charge, max_charge, ac = -1; long time = -1; /* don't update battery too often */ if (current_update_time - pb_battery_info_update < 29.5) { snprintf(buf, n, "%s", pb_battery_info[i]); return; } pb_battery_info_update = current_update_time; if (pmu_battery_fp == NULL) pmu_battery_fp = open_file(batt_path, &rep); if (pmu_battery_fp != NULL) { rewind(pmu_battery_fp); while (!feof(pmu_battery_fp)) { char buf[32]; if (fgets(buf, sizeof(buf), pmu_battery_fp) == NULL) break; if (buf[0] == 'f') sscanf(buf, "flags : %8x", &flags); else if (buf[0] == 'c' && buf[1] == 'h') sscanf(buf, "charge : %d", &charge); else if (buf[0] == 'm') sscanf(buf, "max_charge : %d", &max_charge); else if (buf[0] == 't') sscanf(buf, "time rem. : %ld", &time); } } if (pmu_info_fp == NULL) pmu_info_fp = open_file(info_path, &rep); if (pmu_info_fp != NULL) { rewind(pmu_info_fp); while (!feof(pmu_info_fp)) { char buf[32]; if (fgets(buf, sizeof(buf), pmu_info_fp) == NULL) break; if (buf[0] == 'A') sscanf(buf, "AC Power : %d", &ac); } } /* update status string */ if ((ac && !(flags & PMU_BATT_PRESENT))) strcpy(pb_battery_info[PB_BATT_STATUS], "AC"); else if (ac && (flags & PMU_BATT_PRESENT) && !(flags & PMU_BATT_CHARGING)) strcpy(pb_battery_info[PB_BATT_STATUS], "charged"); else if ((flags & PMU_BATT_PRESENT) && (flags & PMU_BATT_CHARGING)) strcpy(pb_battery_info[PB_BATT_STATUS], "charging"); else strcpy(pb_battery_info[PB_BATT_STATUS], "discharging"); /* update percentage string */ if (time == 0) pb_battery_info[PB_BATT_PERCENT][0] = 0; else snprintf(pb_battery_info[PB_BATT_PERCENT], sizeof(pb_battery_info[PB_BATT_PERCENT]), "%d%%", (charge * 100)/max_charge); /* update time string */ if (time == 0) /* fully charged or battery not present */ pb_battery_info[PB_BATT_TIME][0] = 0; else if (time < 60*60) /* don't show secs */ format_seconds_short(pb_battery_info[PB_BATT_TIME], sizeof(pb_battery_info[PB_BATT_TIME]), time); else format_seconds(pb_battery_info[PB_BATT_TIME], sizeof(pb_battery_info[PB_BATT_TIME]), time); snprintf(buf, n, "%s", pb_battery_info[i]); } void update_top() { show_nice_processes = 1; process_find_top(info.cpu, info.memu); info.first_process = get_first_process(); } /* * The following ifdefs were adapted from gkrellm */ #include #if ! defined (MD_MAJOR) #define MD_MAJOR 9 #endif #if !defined(LVM_BLK_MAJOR) #define LVM_BLK_MAJOR 58 #endif #if !defined(NBD_MAJOR) #define NBD_MAJOR 43 #endif void update_diskio() { static unsigned int last = UINT_MAX; static unsigned int last_read = UINT_MAX; static unsigned int last_write = UINT_MAX; FILE* fp; static int rep=0; char buf[512], devbuf[64]; int major, minor, i; unsigned int current = 0; unsigned int current_read = 0; unsigned int current_write = 0; unsigned int reads, writes = 0; int col_count = 0; if (!(fp =open_file("/proc/diskstats", &rep))) { diskio_value=0; return; } /* read reads and writes from all disks (minor = 0), including * cd-roms and floppies, and summ them up */ while (!feof(fp)) { fgets(buf, 512, fp); col_count = sscanf(buf, "%u %u %s %*u %*u %u %*u %*u %*u %u", &major, &minor, devbuf, &reads, &writes); /* ignore subdevices (they have only 3 matching entries in their line) * and virtual devices (LVM, network block devices, RAM disks, Loopback) * * XXX ignore devices which are part of a SW RAID (MD_MAJOR) */ if (col_count == 5 && major != LVM_BLK_MAJOR && major != NBD_MAJOR && major != RAMDISK_MAJOR && major != LOOP_MAJOR) { current += reads + writes; current_read += reads; current_write += writes; } else { col_count = sscanf(buf, "%u %u %s %*u %u %*u %u", &major, &minor, devbuf, &reads, &writes); if (col_count != 5) { continue; } } for (i = 0; i < MAX_DISKIO_STATS; i++) { if (diskio_stats[i].dev && strcmp(devbuf, diskio_stats[i].dev) == 0) { diskio_stats[i].current = (reads + writes - diskio_stats[i].last) / 2; diskio_stats[i].current_read = (reads - diskio_stats[i].last_read) / 2; diskio_stats[i].current_write = (writes - diskio_stats[i].last_write) / 2; if (reads + writes < diskio_stats[i].last) { diskio_stats[i].current = 0; } if (reads < diskio_stats[i].last_read) { diskio_stats[i].current_read = 0; diskio_stats[i].current = diskio_stats[i].current_write; } if (writes < diskio_stats[i].last_write) { diskio_stats[i].current_write = 0; diskio_stats[i].current = diskio_stats[i].current_read; } diskio_stats[i].last = reads + writes; diskio_stats[i].last_read = reads; diskio_stats[i].last_write = writes; } } } /* since the values in /proc/diststats are absolute, we have * to substract our last reading. The numbers stand for * "sectors read", and we therefore have to divide by two to * get KB */ int tot = ((double)(current-last)/2); int tot_read = ((double)(current_read-last_read)/2); int tot_write = ((double)(current_write-last_write)/2); if (last_read > current_read) tot_read = 0; if (last_write > current_write) tot_write = 0; if (last > current) { /* we hit this either if it's the very first time we * run this, or when /proc/diskstats overflows; while * 0 is not correct, it's at least not way off */ tot = 0; } last = current; last_read = current_read; last_write = current_write; diskio_value = tot; diskio_read_value = tot_read; diskio_write_value = tot_write; fclose(fp); } /* Here come the IBM ACPI-specific things. For reference, see http://ibm-acpi.sourceforge.net/README If IBM ACPI is installed, /proc/acpi/ibm contains the following files: bay beep bluetooth brightness cmos dock driver ecdump fan hotkey led light thermal video volume The content of these files is described in detail in the aforementioned README - some of them also in the following functions accessing them. Peter Tarjan (ptarjan@citromail.hu) */ #define IBM_ACPI_DIR "/proc/acpi/ibm" void get_ibm_acpi_fan( char * p_client_buffer, size_t client_buffer_size ) { /* get fan speed on IBM/Lenovo laptops running the ibm acpi. /proc/acpi/ibm/fan looks like this (3 lines): status: disabled speed: 2944 commands: enable, disable Peter Tarjan (ptarjan@citromail.hu) */ if ( !p_client_buffer || client_buffer_size <= 0 ) return; FILE *fp; unsigned int speed=0; char fan[128]; snprintf(fan, 127, "%s/fan",IBM_ACPI_DIR); fp = fopen(fan, "r"); if (fp != NULL) { while (!feof(fp)) { char line[256]; if (fgets(line, 255, fp) == NULL) break; if (sscanf(line, "speed: %d", &speed)) break; } } else { CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove ibm* from your Conky config file.", fan, strerror(errno)); } fclose(fp); snprintf( p_client_buffer, client_buffer_size, "%d", speed ); return; } static double last_ibm_acpi_temp_time; void get_ibm_acpi_temps() { /* get the measured temperatures from the temperature sensors on IBM/Lenovo laptops running the ibm acpi. There are 8 values in /proc/acpi/ibm/thermal, and according to http://ibm-acpi.sourceforge.net/README these mean the following (at least on an IBM R51...) 0: CPU (also on the T series laptops) 1: Mini PCI Module (?) 2: HDD (?) 3: GPU (also on the T series laptops) 4: Battery (?) 5: N/A 6: Battery (?) 7: N/A I'm not too sure about those with the question mark, but the values I'm reading from *my* thermal file (on a T42p) look realistic for the hdd and the battery. #5 and #7 are always -128. /proc/acpi/ibm/thermal looks like this (1 line): temperatures: 41 43 31 46 33 -128 29 -128 Peter Tarjan (ptarjan@citromail.hu) */ /* don't update too often */ if (current_update_time - last_ibm_acpi_temp_time < 10.00) { return; } last_ibm_acpi_temp_time = current_update_time; /* if ( !p_client_buffer || client_buffer_size <= 0 ) return; */ FILE *fp; char thermal[128]; snprintf(thermal, 127, "%s/thermal",IBM_ACPI_DIR); fp = fopen(thermal, "r"); if (fp != NULL) { while (!feof(fp)) { char line[256]; if (fgets(line, 255, fp) == NULL) break; if (sscanf(line, "temperatures: %d %d %d %d %d %d %d %d", &ibm_acpi.temps[0], &ibm_acpi.temps[1], &ibm_acpi.temps[2], &ibm_acpi.temps[3], &ibm_acpi.temps[4], &ibm_acpi.temps[5], &ibm_acpi.temps[6], &ibm_acpi.temps[7])) break; } } else { CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove ibm* from your Conky config file.", thermal, strerror(errno)); } fclose(fp); } void get_ibm_acpi_volume( char * p_client_buffer, size_t client_buffer_size ) { /* get volume (0-14) on IBM/Lenovo laptops running the ibm acpi. "Volume" here is none of the mixer volumes, but a "master of masters" volume adjusted by the IBM volume keys. /proc/acpi/ibm/fan looks like this (4 lines): level: 4 mute: off commands: up, down, mute commands: level ( is 0-15) Peter Tarjan (ptarjan@citromail.hu) */ if ( !p_client_buffer || client_buffer_size <= 0 ) return; FILE *fp; char volume[128]; snprintf(volume, 127, "%s/volume",IBM_ACPI_DIR); unsigned int vol=-1; char mute[3]=""; fp = fopen(volume, "r"); if (fp != NULL) { while (!feof(fp)) { char line[256]; unsigned int read_vol = -1; if (fgets(line, 255, fp) == NULL) break; if (sscanf(line, "level: %d", &read_vol)) { vol = read_vol; continue; } if (sscanf(line, "mute: %s", mute)) break; } } else { CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove ibm* from your Conky config file.", volume, strerror(errno)); } fclose(fp); if (strcmp(mute, "on")==0) { snprintf( p_client_buffer, client_buffer_size, "%s", "mute" ); return; } else { snprintf( p_client_buffer, client_buffer_size, "%d", vol ); return; } } /*static FILE *fp=NULL;*/ void get_ibm_acpi_brightness(char * p_client_buffer, size_t client_buffer_size) { /* get LCD brightness on IBM/Lenovo laptops running the ibm acpi. /proc/acpi/ibm/brightness looks like this (3 lines): level: 7 commands: up, down commands: level ( is 0-7) Peter Tarjan (ptarjan@citromail.hu) */ if ( !p_client_buffer || client_buffer_size <= 0 ) return; FILE *fp; unsigned int brightness=0; char filename[128]; snprintf(filename, 127, "%s/brightness",IBM_ACPI_DIR); fp = fopen(filename, "r"); if (fp != NULL) { while (!feof(fp)) { char line[256]; if (fgets(line, 255, fp) == NULL) break; if (sscanf(line, "level: %d", &brightness)) break; } } else { CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove ibm* from your Conky config file.", filename, strerror(errno)); } fclose(fp); snprintf( p_client_buffer, client_buffer_size, "%d", brightness ); return; } void update_entropy (void) { static int rep = 0; const char *entropy_avail = "/proc/sys/kernel/random/entropy_avail"; const char *entropy_poolsize = "/proc/sys/kernel/random/poolsize"; FILE *fp1, *fp2; info.entropy.entropy_avail=0; info.entropy.poolsize=0; if ((fp1 = open_file (entropy_avail, &rep))==NULL) return; if ((fp2 = open_file (entropy_poolsize, &rep))==NULL) { fclose (fp1); return; } fscanf (fp1, "%u", &info.entropy.entropy_avail); fscanf (fp2, "%u", &info.entropy.poolsize); fclose (fp1); fclose (fp2); info.mask |= (1 << INFO_ENTROPY); }