/* * * Conky, a system monitor, based on torsmo * * Any original torsmo code is licensed under the BSD license * * All code written since the fork of torsmo is licensed under the GPL * * Please see COPYING for details * * Copyright (c) 2004, Hannu Saransaari and Lauri Hakkarainen * Copyright (c) 2005-2021 Brenden Matthews, Philip Kovacs, et. al. * (see AUTHORS) * All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "gradient.h" #include "conky.h" #include "logging.h" #ifdef BUILD_X11 #include "x11.h" #endif /* BUILD_X11 */ namespace conky { bool gradient_factory::is_set = false; short gradient_factory::colour_depth = 0; long gradient_factory::mask[3]; short gradient_factory::shift[3]; gradient_factory::gradient_factory(int width, unsigned long first_colour, unsigned long last_colour) { // Make sure the width is always at least 2 this->width = std::max(2, width); this->first_colour = first_colour; this->last_colour = last_colour; if (!is_set) { setup_colour_depth(); setup_shifts(); setup_masks(); is_set = true; } } void gradient_factory::setup_shifts() { shift[0] = (2 * colour_depth / 3 + colour_depth % 3); shift[1] = (colour_depth / 3); shift[2] = 0; } void gradient_factory::setup_masks() { mask[0] = mask[1] = mask[2] = 0; for (int i = (colour_depth / 3) - 1; i >= 0; i--) { mask[0] |= 1 << i; mask[1] |= 1 << i; mask[2] |= 1 << i; } if (colour_depth % 3 == 1) { mask[1] |= 1 << (colour_depth / 3); } for (int i = 0; i < 3; i++) { mask[i] = mask[i] << shift[i]; } } void gradient_factory::setup_colour_depth() { #ifdef BUILD_X11 if (out_to_x.get(*state)) { colour_depth = DisplayPlanes(display, screen); } else #endif /* BUILD_X11 */ { colour_depth = 16; } if (colour_depth != 24 && colour_depth != 16) { NORM_ERR( "using non-standard colour depth, " "gradients may look like a lolly-pop"); } } void gradient_factory::convert_from_rgb(long original, long *array) { long scaled[3]; for (int i = 0; i < 3; i++) { auto value = (original & mask[i]) >> shift[i]; scaled[i] = value * SCALE; } convert_from_scaled_rgb(scaled, array); } int gradient_factory::convert_to_rgb(long *const array) { long scaled_rgb[3]; int rgb = 0; convert_to_scaled_rgb(array, scaled_rgb); for (int i = 0; i < 3; i++) { auto value = scaled_rgb[i] / SCALE; rgb |= value << shift[i]; } return rgb; } gradient_factory::colour_array gradient_factory::create_gradient() { colour_array colours(new unsigned long[width]); long first_converted[3]; long last_converted[3]; long diff[3], delta[3]; colours[0] = first_colour; colours[width - 1] = last_colour; convert_from_rgb(first_colour, first_converted); convert_from_rgb(last_colour, last_converted); for (int i = 0; i < 3; i++) { diff[i] = last_converted[i] - first_converted[i]; } fix_diff(diff); for (int i = 0; i < 3; i++) { delta[i] = diff[i] / (width - 1); } for (int i = 1; i < width - 1; i++) { for (int k = 0; k < 3; k++) { first_converted[k] += delta[k]; } colours[i] = convert_to_rgb(first_converted); } return colours; } long gradient_factory::get_hue(long *const rgb, long chroma, long value) { if (chroma == 0) { return 0; } long diff, offset; if (rgb[0] == value) { diff = rgb[1] - rgb[2]; offset = 0; } else if (rgb[1] == value) { diff = rgb[2] - rgb[0]; offset = SCALE2; } else { diff = rgb[0] - rgb[1]; offset = SCALE4; } long h = (SCALE * diff) / chroma + offset; return 60L * ((SCALE6 + h) % SCALE6); } long gradient_factory::get_intermediate(long hue, long chroma) { long h = hue / 60L; long multiplier = SCALE - std::abs(h % SCALE2 - SCALE); return (chroma * multiplier) / SCALE; } /* rgb_gradient_factory */ void rgb_gradient_factory::convert_from_scaled_rgb(long *const scaled, long *target) { target[0] = scaled[0] * 360L; target[1] = scaled[1] * 360L; target[2] = scaled[2] * 360L; } void rgb_gradient_factory::convert_to_scaled_rgb(long *const target, long *scaled) { scaled[0] = target[0] / 360L; scaled[1] = target[1] / 360L; scaled[2] = target[2] / 360L; } /* rgb_gradient_factory */ namespace { long get_value(long *const rgb) { if (rgb[0] > rgb[1]) { return std::max(rgb[0], rgb[2]); } return std::max(rgb[1], rgb[2]); } long get_minimum(long *const rgb) { if (rgb[0] < rgb[1]) { return std::min(rgb[0], rgb[2]); } return std::min(rgb[1], rgb[2]); } } // namespace /* hsv_gradient_factory */ void hsv_gradient_factory::fix_diff(long *diff) { if (diff[0] > SCALE180) { diff[0] -= SCALE360; } else if (diff[0] < -SCALE180) { diff[0] += SCALE360; } } void hsv_gradient_factory::convert_from_scaled_rgb(long *const scaled, long *target) { auto value = get_value(scaled); auto minimum = get_minimum(scaled); auto chroma = value - minimum; auto saturation = (SCALE360 * chroma) / value; target[0] = get_hue(scaled, chroma, value); target[1] = saturation; target[2] = value * 360L; } void hsv_gradient_factory::convert_to_scaled_rgb(long *const target, long *scaled) { auto hue = target[0] % SCALE360; auto saturation = target[1] / 360L; auto value = target[2] / 360L; auto chroma = (saturation * value) / SCALE; auto x = get_intermediate(hue, chroma); scaled[0] = scaled[1] = scaled[2] = (value - chroma); if (hue < SCALE60) { scaled[0] += chroma; scaled[1] += x; } else if (hue < SCALE120) { scaled[0] += x; scaled[1] += chroma; } else if (hue < SCALE180) { scaled[1] += chroma; scaled[2] += x; } else if (hue < SCALE240) { scaled[1] += x; scaled[2] += chroma; } else if (hue < SCALE300) { scaled[2] += chroma; scaled[0] += x; } else { scaled[2] += x; scaled[0] += chroma; } } /* hsv_gradient_factory */ namespace { // Using Rec.2020 color space // Y' = 0.2627 x R + 0.6780 x G + 0.0593 x B long get_luma(long *const rgb) { return 360L * (2627L * rgb[0] + 6780L * rgb[1] + 593L * rgb[2]) / 10000L; } // Using Rec.2020 color space // m = Y' - (0.2627 x R + 0.6780 x G + 0.0593 x B) long get_minimum_from_luma(long luma, long r, long g, long b) { return luma - (2627L * r + 6780L * g + 593L * b) / 10000L; } } // namespace /* hcl_gradient_factory */ void hcl_gradient_factory::fix_diff(long *diff) { if (diff[0] > SCALE180) { diff[0] -= SCALE360; } else if (diff[0] < -SCALE180) { diff[0] += SCALE360; } } void hcl_gradient_factory::convert_from_scaled_rgb(long *const scaled, long *target) { auto value = get_value(scaled); auto minimum = get_minimum(scaled); auto luma = get_luma(scaled); auto chroma = value - minimum; target[0] = get_hue(scaled, chroma, value); target[1] = chroma * 360L; target[2] = luma; } void hcl_gradient_factory::convert_to_scaled_rgb(long *const target, long *scaled) { auto hue = target[0] % SCALE360; auto chroma = target[1] / 360L; auto luma = target[2] / 360L; auto x = get_intermediate(hue, chroma); long m; if (hue < SCALE60) { m = get_minimum_from_luma(luma, chroma, x, 0); scaled[0] = scaled[1] = scaled[2] = m; scaled[0] += chroma; scaled[1] += x; } else if (hue < SCALE120) { m = get_minimum_from_luma(luma, x, chroma, 0); scaled[0] = scaled[1] = scaled[2] = m; scaled[0] += x; scaled[1] += chroma; } else if (hue < SCALE180) { m = get_minimum_from_luma(luma, 0, chroma, x); scaled[0] = scaled[1] = scaled[2] = m; scaled[1] += chroma; scaled[2] += x; } else if (hue < SCALE240) { m = get_minimum_from_luma(luma, 0, x, chroma); scaled[0] = scaled[1] = scaled[2] = m; scaled[1] += x; scaled[2] += chroma; } else if (hue < SCALE300) { m = get_minimum_from_luma(luma, x, 0, chroma); scaled[0] = scaled[1] = scaled[2] = m; scaled[2] += chroma; scaled[0] += x; } else { m = get_minimum_from_luma(luma, chroma, 0, x); scaled[0] = scaled[1] = scaled[2] = m; scaled[2] += x; scaled[0] += chroma; } } /* hcl_gradient_factory */ } // namespace conky