/* * * Conky, a system monitor, based on torsmo * * Any original torsmo code is licensed under the BSD license * * All code written since the fork of torsmo is licensed under the GPL * * Please see COPYING for details * * Copyright (c) 2004, Hannu Saransaari and Lauri Hakkarainen * Copyright (c) 2005-2019 Brenden Matthews, Philip Kovacs, et. al. * (see AUTHORS) * All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "conky.h" #include "logging.h" #ifdef BUILD_X11 #include "x11.h" #endif /* precalculated: 31/255, and 63/255 */ #define CONST_8_TO_5_BITS 0.12156862745098 #define CONST_8_TO_6_BITS 0.247058823529412 #define CONST_SCALE 512L #define CONST_SCALE_HALF (CONST_SCALE / 2) #define CONST_SCALE2 (CONST_SCALE * 2L) #define CONST_SCALE4 (CONST_SCALE * 4L) #define CONST_SCALE6 (CONST_SCALE * 6L) #define CONST_SCALE60 (CONST_SCALE * 60L) #define CONST_SCALE120 (CONST_SCALE * 120L) #define CONST_SCALE180 (CONST_SCALE * 180L) #define CONST_SCALE240 (CONST_SCALE * 240L) #define CONST_SCALE300 (CONST_SCALE * 300L) #define CONST_SCALE360 (CONST_SCALE * 360L) static short colour_depth = 0; static long redmask, greenmask, bluemask; static void set_up_gradient() { int i; #ifdef BUILD_X11 if (out_to_x.get(*state)) { colour_depth = DisplayPlanes(display, screen); } else #endif /* BUILD_X11 */ { colour_depth = 16; } if (colour_depth != 24 && colour_depth != 16) { NORM_ERR( "using non-standard colour depth, gradients may look like a " "lolly-pop"); } redmask = 0; greenmask = 0; bluemask = 0; for (i = (colour_depth / 3) - 1; i >= 0; i--) { redmask |= 1 << i; greenmask |= 1 << i; bluemask |= 1 << i; } if (colour_depth % 3 == 1) { greenmask |= 1 << (colour_depth / 3); } redmask = redmask << (2 * colour_depth / 3 + colour_depth % 3); greenmask = greenmask << (colour_depth / 3); } /* adjust colour values depending on colour depth */ unsigned int adjust_colours(unsigned int colour) { double r, g, b; if (colour_depth == 0) { set_up_gradient(); } if (colour_depth == 16) { r = (colour & 0xff0000) >> 16; g = (colour & 0xff00) >> 8; b = colour & 0xff; colour = static_cast(r * CONST_8_TO_5_BITS) << 11; colour |= static_cast(g * CONST_8_TO_6_BITS) << 5; colour |= static_cast(b * CONST_8_TO_5_BITS); } return colour; } /* this function returns the next colour between two colours for a gradient */ unsigned long *do_gradient(int width, unsigned long first_colour, unsigned long last_colour) { int red1, green1, blue1; // first colour int red2, green2, blue2; // last colour int reddiff, greendiff, bluediff; // difference short redshift = (2 * colour_depth / 3 + colour_depth % 3); short greenshift = (colour_depth / 3); auto *colours = static_cast(malloc(width * sizeof(unsigned long))); int i; if (colour_depth == 0) { set_up_gradient(); } red1 = (first_colour & redmask) >> redshift; green1 = (first_colour & greenmask) >> greenshift; blue1 = first_colour & bluemask; red2 = (last_colour & redmask) >> redshift; green2 = (last_colour & greenmask) >> greenshift; blue2 = last_colour & bluemask; reddiff = abs(red1 - red2); greendiff = abs(green1 - green2); bluediff = abs(blue1 - blue2); #ifdef HAVE_OPENMP #pragma omp parallel for schedule(dynamic, 10) shared(colours) #endif /* HAVE_OPENMP */ for (i = 0; i < width; i++) { int red3 = 0, green3 = 0, blue3 = 0; // colour components float factor = (static_cast(i) / (width - 1)); /* the '+ 0.5' bit rounds our floats to ints properly */ if (red1 >= red2) { red3 = -(factor * reddiff) - 0.5; } else if (red1 < red2) { red3 = factor * reddiff + 0.5; } if (green1 >= green2) { green3 = -(factor * greendiff) - 0.5; } else if (green1 < green2) { green3 = factor * greendiff + 0.5; } if (blue1 >= blue2) { blue3 = -(factor * bluediff) - 0.5; } else if (blue1 < blue2) { blue3 = factor * bluediff + 0.5; } red3 += red1; green3 += green1; blue3 += blue1; if (red3 < 0) { red3 = 0; } if (green3 < 0) { green3 = 0; } if (blue3 < 0) { blue3 = 0; } if (red3 > bluemask) { red3 = bluemask; } if (green3 > bluemask) { green3 = bluemask; } if (blue3 > bluemask) { blue3 = bluemask; } colours[i] = (red3 << redshift) | (green3 << greenshift) | blue3; } return colours; } long to_decimal_scale(long value, long max_value) { if (value == 0) { return 0; } else if (value > 0) { return (value * CONST_SCALE + max_value - 1) / max_value; } return -((abs(value) * CONST_SCALE + max_value - 1) / max_value); } long from_decimal_scale(long value, long max_value) { if (value == 0) { return 0; } else if (value > 0) { return (value * max_value + CONST_SCALE_HALF) / CONST_SCALE; } return -((abs(value) * max_value + CONST_SCALE_HALF) / CONST_SCALE); } void scaled_rgb_to_scaled_hsv(long * const rgb, long *hsv) { long val = rgb[0] > rgb[1] ? MAX(rgb[0], rgb[2]) : MAX(rgb[1], rgb[2]); long cmin = rgb[0] < rgb[1] ? MIN(rgb[0], rgb[2]) : MIN(rgb[1], rgb[2]); long delta = val - cmin; long hue; if (delta == 0) { hue = 0; } else { long d; long offset; if (rgb[0] == val) { d = rgb[1] - rgb[2]; offset = 0; } else if (rgb[1] == val) { d = rgb[2] - rgb[0]; offset = CONST_SCALE2; } else { d = rgb[0] - rgb[1]; offset = CONST_SCALE4; } long h = (CONST_SCALE * d + delta / 2) / delta + offset; hue = 60L * ((CONST_SCALE6 + h) % CONST_SCALE6); } long sat; if (val == 0) { sat = 0; } else { sat = (CONST_SCALE * delta + val / 2) / val; } hsv[0] = hue; hsv[1] = sat; hsv[2] = val; } void scaled_hsv_to_scaled_rgb(long *const hsv, long *rgb) { long c = (hsv[2] * hsv[1] + CONST_SCALE_HALF) / CONST_SCALE; long hue = hsv[0] % CONST_SCALE360; long x = (c * (CONST_SCALE - abs(((hue + 30L) / 60L) % CONST_SCALE2 - CONST_SCALE)) + CONST_SCALE_HALF) / CONST_SCALE; long m = hsv[2] - c; rgb[0] = m; rgb[1] = m; rgb[2] = m; if (hue < CONST_SCALE60) { rgb[0] += c; rgb[1] += x; } else if (hue < CONST_SCALE120) { rgb[0] += x; rgb[1] += c; } else if (hue < CONST_SCALE180) { rgb[1] += c; rgb[2] += x; } else if (hue < CONST_SCALE240) { rgb[1] += x; rgb[2] += c; } else if (hue < CONST_SCALE300) { rgb[2] += c; rgb[0] += x; } else { rgb[2] += x; rgb[0] += c; } } /* this function returns the next colour between two colours in hsv space for a gradient */ unsigned long *do_hsv_gradient(int width, unsigned long first_colour, unsigned long last_colour) { long rgb1[3], rgb2[3], rgb3[3]; long hsv1[3], hsv2[3]; long hueDiff, satDiff, valDiff; int redshift = (2 * colour_depth / 3 + colour_depth % 3); int greenshift = (colour_depth / 3); auto *colours = static_cast(malloc(width * sizeof(unsigned long))); int i; if (colour_depth == 0) { set_up_gradient(); } rgb1[0] = to_decimal_scale((first_colour & redmask) >> redshift, redmask >> redshift); rgb1[1] = to_decimal_scale((first_colour & greenmask) >> greenshift, greenmask >> greenshift); rgb1[2] = to_decimal_scale(first_colour & bluemask, bluemask); rgb2[0] = to_decimal_scale((last_colour & redmask) >> redshift, redmask >> redshift); rgb2[1] = to_decimal_scale((last_colour & greenmask) >> greenshift, greenmask >> greenshift); rgb2[2] = to_decimal_scale(last_colour & bluemask, bluemask); scaled_rgb_to_scaled_hsv(rgb1, hsv1); scaled_rgb_to_scaled_hsv(rgb2, hsv2); hueDiff = hsv2[0] - hsv1[0]; // use shortest hue path if (hueDiff > CONST_SCALE180) { hueDiff = hueDiff - CONST_SCALE360; } else if (hueDiff < -CONST_SCALE180) { hueDiff = hueDiff + CONST_SCALE360; } satDiff = hsv2[1] - hsv1[1]; valDiff = hsv2[2] - hsv1[2]; colours[0] = first_colour; colours[width - 1] = last_colour; for (i = 1; i < (width - 1); i++) { long k; long divisor = width - i; k = (hueDiff + divisor / 2) / divisor; hueDiff -= k; long h = hsv1[0] + k; if (h < 0) { hsv1[0] = CONST_SCALE360 + h; } else { hsv1[0] = h; } k = (satDiff + divisor / 2) / divisor; satDiff -= k; hsv1[1] += k; k = (valDiff + divisor / 2) / divisor; valDiff -= k; hsv1[2] += k; scaled_hsv_to_scaled_rgb(hsv1, rgb3); long red3 = from_decimal_scale(rgb3[0], bluemask); long green3 = from_decimal_scale(rgb3[1], bluemask); long blue3 = from_decimal_scale(rgb3[2], bluemask); colours[i] = (red3 << redshift) | (green3 << greenshift) | blue3; } return colours; } #ifdef BUILD_X11 long get_x11_color(const char *name) { XColor color; color.pixel = 0; if (XParseColor(display, DefaultColormap(display, screen), name, &color) == 0) { /* lets check if it's a hex colour with the # missing in front * if yes, then do something about it */ char newname[DEFAULT_TEXT_BUFFER_SIZE]; newname[0] = '#'; strncpy(&newname[1], name, DEFAULT_TEXT_BUFFER_SIZE - 1); /* now lets try again */ if (XParseColor(display, DefaultColormap(display, screen), &newname[0], &color) == 0) { NORM_ERR("can't parse X color '%s'", name); return 0xFF00FF; } } if (XAllocColor(display, DefaultColormap(display, screen), &color) == 0) { NORM_ERR("can't allocate X color '%s'", name); } return static_cast(color.pixel); } long get_x11_color(const std::string &colour) { return get_x11_color(colour.c_str()); } #endif