/* Conky, a system monitor, based on torsmo * * Any original torsmo code is licensed under the BSD license * * All code written since the fork of torsmo is licensed under the GPL * * Please see COPYING for details * * Copyright (c) 2005-2008 Brenden Matthews, Philip Kovacs, et. al. * (see AUTHORS) * All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * * $Id$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "conky.h" #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) #define KELVTOC(x) ((x - 2732) / 10.0) #define MAXSHOWDEVS 16 #if 0 #define FREEBSD_DEBUG #endif inline void proc_find_top(struct process **cpu, struct process **mem); u_int64_t diskio_prev = 0; static short cpu_setup = 0; static short diskio_setup = 0; static int getsysctl(char *name, void *ptr, size_t len) { size_t nlen = len; if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { return -1; } if (nlen != len) { return -1; } return 0; } struct ifmibdata *data = NULL; size_t len = 0; static int swapmode(unsigned long *retavail, unsigned long *retfree) { int n; unsigned long pagesize = getpagesize(); struct kvm_swap swapary[1]; *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * (pagesize / 1024)) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) { return 0; } *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); n = (int) ((double) swapary[0].ksw_used * 100.0 / (double) swapary[0].ksw_total); return n; } void prepare_update() { } void update_uptime() { int mib[2] = { CTL_KERN, KERN_BOOTTIME }; struct timeval boottime; time_t now; size_t size = sizeof(boottime); if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1) && (boottime.tv_sec != 0)) { time(&now); info.uptime = now - boottime.tv_sec; } else { fprintf(stderr, "Could not get uptime\n"); info.uptime = 0; } } int check_mount(char *s) { struct statfs *mntbuf; int i, mntsize; mntsize = getmntinfo(&mntbuf, MNT_NOWAIT); for (i = mntsize - 1; i >= 0; i--) { if (strcmp(mntbuf[i].f_mntonname, s) == 0) { return 1; } } return 0; } void update_meminfo() { unsigned long total_pages, inactive_pages, free_pages; unsigned long swap_avail, swap_free; int pagesize = getpagesize(); if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages)) { fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_page_count\""); } if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages)) { fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_free_count\""); } if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages)) { fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_inactive_count\""); } info.memmax = total_pages * (pagesize >> 10); info.mem = (total_pages - free_pages - inactive_pages) * (pagesize >> 10); if ((swapmode(&swap_avail, &swap_free)) >= 0) { info.swapmax = swap_avail; info.swap = (swap_avail - swap_free); } else { info.swapmax = 0; info.swap = 0; } } void update_net_stats() { struct net_stat *ns; double delta; long long r, t, last_recv, last_trans; struct ifaddrs *ifap, *ifa; struct if_data *ifd; /* get delta */ delta = current_update_time - last_update_time; if (delta <= 0.0001) { return; } if (getifaddrs(&ifap) < 0) { return; } for (ifa = ifap; ifa; ifa = ifa->ifa_next) { ns = get_net_stat((const char *) ifa->ifa_name); if (ifa->ifa_flags & IFF_UP) { struct ifaddrs *iftmp; ns->up = 1; last_recv = ns->recv; last_trans = ns->trans; if (ifa->ifa_addr->sa_family != AF_LINK) { continue; } for (iftmp = ifa->ifa_next; iftmp != NULL && strcmp(ifa->ifa_name, iftmp->ifa_name) == 0; iftmp = iftmp->ifa_next) { if (iftmp->ifa_addr->sa_family == AF_INET) { memcpy(&(ns->addr), iftmp->ifa_addr, iftmp->ifa_addr->sa_len); } } ifd = (struct if_data *) ifa->ifa_data; r = ifd->ifi_ibytes; t = ifd->ifi_obytes; if (r < ns->last_read_recv) { ns->recv += ((long long) 4294967295U - ns->last_read_recv) + r; } else { ns->recv += (r - ns->last_read_recv); } ns->last_read_recv = r; if (t < ns->last_read_trans) { ns->trans += ((long long) 4294967295U - ns->last_read_trans) + t; } else { ns->trans += (t - ns->last_read_trans); } ns->last_read_trans = t; /* calculate speeds */ ns->recv_speed = (ns->recv - last_recv) / delta; ns->trans_speed = (ns->trans - last_trans) / delta; } else { ns->up = 0; } } freeifaddrs(ifap); } void update_total_processes() { int n_processes; kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes); info.procs = n_processes; } void update_running_processes() { struct kinfo_proc *p; int n_processes; int i, cnt = 0; p = kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes); for (i = 0; i < n_processes; i++) { #if (__FreeBSD__ < 5) && (__FreeBSD_kernel__ < 5) if (p[i].kp_proc.p_stat == SRUN) { #else if (p[i].ki_stat == SRUN) { #endif cnt++; } } info.run_procs = cnt; } struct cpu_load_struct { unsigned long load[5]; }; struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} }; long cpu_used, oldtotal, oldused; void get_cpu_count() { /* int cpu_count = 0; */ /* XXX: FreeBSD doesn't allow to get per CPU load stats on SMP machines. * It's possible to get a CPU count, but as we fulfill only * info.cpu_usage[0], it's better to report there's only one CPU. * It should fix some bugs (e.g. cpugraph) */ #if 0 if (GETSYSCTL("hw.ncpu", cpu_count) == 0) { info.cpu_count = cpu_count; } #endif info.cpu_count = 1; info.cpu_usage = malloc(info.cpu_count * sizeof(float)); if (info.cpu_usage == NULL) { CRIT_ERR("malloc"); } } /* XXX: SMP support */ void update_cpu_usage() { long used, total; long cp_time[CPUSTATES]; size_t len = sizeof(cp_time); /* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */ if ((cpu_setup == 0) || (!info.cpu_usage)) { get_cpu_count(); cpu_setup = 1; } if (sysctlbyname("kern.cp_time", &cp_time, &len, NULL, 0) < 0) { fprintf(stderr, "Cannot get kern.cp_time"); } fresh.load[0] = cp_time[CP_USER]; fresh.load[1] = cp_time[CP_NICE]; fresh.load[2] = cp_time[CP_SYS]; fresh.load[3] = cp_time[CP_IDLE]; fresh.load[4] = cp_time[CP_IDLE]; used = fresh.load[0] + fresh.load[1] + fresh.load[2]; total = fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3]; if ((total - oldtotal) != 0) { info.cpu_usage[0] = ((double) (used - oldused)) / (double) (total - oldtotal); } else { info.cpu_usage[0] = 0; } oldused = used; oldtotal = total; } double get_sysfs_info(int *fd, int arg, char *devtype, char *type) { return 0.0; } void update_load_average() { double v[3]; getloadavg(v, 3); info.loadavg[0] = (double) v[0]; info.loadavg[1] = (double) v[1]; info.loadavg[2] = (double) v[2]; } double get_acpi_temperature(int fd) { int temp; if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n"); return 0.0; } return KELVTOC(temp); } void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item) { int battime, batcapacity, batstate, ac; char battery_status[64]; char battery_time[64]; if (GETSYSCTL("hw.acpi.battery.time", battime)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.time\"\n"); } if (GETSYSCTL("hw.acpi.battery.life", batcapacity)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.life\"\n"); } if (GETSYSCTL("hw.acpi.battery.state", batstate)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.state\"\n"); } if (GETSYSCTL("hw.acpi.acline", ac)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n"); } if (batstate == 1) { if (battime != -1) { snprintf(battery_status, sizeof(battery_status) - 1, "remaining %d%%", batcapacity); snprintf(battery_time, sizeof(battery_time) - 1, "%d:%2.2d", battime / 60, battime % 60); /* snprintf(buf, n, "remaining %d%% (%d:%2.2d)", batcapacity, battime / 60, battime % 60); */ } else { /* no time estimate available yet */ snprintf(battery_status, sizeof(battery_status) - 1, "remaining %d%%", batcapacity); } /* snprintf(buf, n, "remaining %d%%", batcapacity); */ if (ac == 1) { fprintf(stderr, "Discharging while on AC!\n"); } } else { snprintf(battery_status, sizeof(battery_status) - 1, batstate == 2 ? "charging (%d%%)" : "charged (%d%%)", batcapacity); /* snprintf(buf, n, batstate == 2 ? "charging (%d%%)" : "charged (%d%%)", batcapacity); */ if (batstate != 2 && batstate != 0) { fprintf(stderr, "Unknown battery state %d!\n", batstate); } if (ac == 0) { fprintf(stderr, "Charging while not on AC!\n"); } } switch (item) { case BATTERY_STATUS: snprintf(buf, n, "%s", battery_status); break; case BATTERY_TIME: snprintf(buf, n, "%s", battery_time); break; default: break; } } int get_battery_perct(const char *bat) { /* not implemented */ return 0; } int get_battery_perct_bar(const char *bar) { /* not implemented */ return 0; } int open_sysfs_sensor(const char *dir, const char *dev, const char *type, int n, int *div, char *devtype) { return 0; } int open_acpi_temperature(const char *name) { return 0; } void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size) { int state; if (!p_client_buffer || client_buffer_size <= 0) { return; } if (GETSYSCTL("hw.acpi.acline", state)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n"); return; } if (state) { strncpy(p_client_buffer, "Running on AC Power", client_buffer_size); } else { strncpy(p_client_buffer, "Running on battery", client_buffer_size); } } void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) { /* not implemented */ if (p_client_buffer && client_buffer_size > 0) { memset(p_client_buffer, 0, client_buffer_size); } } void get_adt746x_cpu(char *p_client_buffer, size_t client_buffer_size) { /* not implemented */ if (p_client_buffer && client_buffer_size > 0) { memset(p_client_buffer, 0, client_buffer_size); } } void get_adt746x_fan(char *p_client_buffer, size_t client_buffer_size) { /* not implemented */ if (p_client_buffer && client_buffer_size > 0) { memset(p_client_buffer, 0, client_buffer_size); } } /* rdtsc() and get_freq_dynamic() copied from linux.c */ #if defined(__i386) || defined(__x86_64) __inline__ unsigned long long int rdtsc() { unsigned long long int x; __asm__ volatile(".byte 0x0f, 0x31":"=A" (x)); return x; } #endif /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ void get_freq_dynamic(char *p_client_buffer, size_t client_buffer_size, char *p_format, int divisor) { #if defined(__i386) || defined(__x86_64) struct timezone tz; struct timeval tvstart, tvstop; unsigned long long cycles[2]; /* gotta be 64 bit */ unsigned int microseconds; /* total time taken */ memset(&tz, 0, sizeof(tz)); /* get this function in cached memory */ gettimeofday(&tvstart, &tz); cycles[0] = rdtsc(); gettimeofday(&tvstart, &tz); /* we don't trust that this is any specific length of time */ usleep(100); cycles[1] = rdtsc(); gettimeofday(&tvstop, &tz); microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) + (tvstop.tv_usec - tvstart.tv_usec); snprintf(p_client_buffer, client_buffer_size, p_format, (float) ((cycles[1] - cycles[0]) / microseconds) / divisor); #else get_freq(p_client_buffer, client_buffer_size, p_format, divisor, 1); #endif } /* void */ char get_freq(char *p_client_buffer, size_t client_buffer_size, char *p_format, int divisor, unsigned int cpu) { int freq; char *freq_sysctl; freq_sysctl = (char *) calloc(16, sizeof(char)); if (freq_sysctl == NULL) { exit(-1); } snprintf(freq_sysctl, 16, "dev.cpu.%d.freq", (cpu - 1)); if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) { return 0; } if (GETSYSCTL(freq_sysctl, freq) == 0) { snprintf(p_client_buffer, client_buffer_size, p_format, (float) freq / divisor); } else { snprintf(p_client_buffer, client_buffer_size, p_format, 0.0f); } free(freq_sysctl); return 1; } void update_top() { proc_find_top(info.cpu, info.memu); } #if 0 void update_wifi_stats() { struct ifreq ifr; /* interface stats */ struct wi_req wireq; struct net_stat *ns; struct ifaddrs *ifap, *ifa; struct ifmediareq ifmr; int s; /* Get iface table */ if (getifaddrs(&ifap) < 0) { return; } for (ifa = ifap; ifa; ifa = ifa->ifa_next) { ns = get_net_stat((const char *) ifa->ifa_name); s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); /* Get media type */ bzero(&ifmr, sizeof(ifmr)); strlcpy(ifmr.ifm_name, ifa->ifa_name, IFNAMSIZ); if (ioctl(s, SIOCGIFMEDIA, (caddr_t) &ifmr) < 0) { close(s); return; } /* We can monitor only wireless interfaces * which are not in hostap mode */ if ((ifmr.ifm_active & IFM_IEEE80211) && !(ifmr.ifm_active & IFM_IEEE80211_HOSTAP)) { /* Get wi status */ bzero(&ifr, sizeof(ifr)); strlcpy(ifr.ifr_name, ifa->ifa_name, IFNAMSIZ); wireq.wi_type = WI_RID_COMMS_QUALITY; wireq.wi_len = WI_MAX_DATALEN; ifr.ifr_data = (void *) &wireq; if (ioctl(s, SIOCGWAVELAN, (caddr_t) &ifr) < 0) { perror("ioctl (getting wi status)"); exit(1); } /* wi_val[0] = quality * wi_val[1] = signal * wi_val[2] = noise */ ns->linkstatus = (int) wireq.wi_val[1]; } cleanup: close(s); } } #endif void update_diskio() { int devs_count, num_selected, num_selections, i; struct device_selection *dev_select = NULL; long select_generation; int dn; static struct statinfo statinfo_cur; u_int64_t diskio_current = 0; u_int64_t writes = 0; bzero(&statinfo_cur, sizeof(statinfo_cur)); statinfo_cur.dinfo = (struct devinfo *) malloc(sizeof(struct devinfo)); bzero(statinfo_cur.dinfo, sizeof(struct devinfo)); if (devstat_getdevs(NULL, &statinfo_cur) < 0) { return; } devs_count = statinfo_cur.dinfo->numdevs; if (devstat_selectdevs(&dev_select, &num_selected, &num_selections, &select_generation, statinfo_cur.dinfo->generation, statinfo_cur.dinfo->devices, devs_count, NULL, 0, NULL, 0, DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) { for (dn = 0; dn < devs_count; ++dn) { int di; struct devstat *dev; di = dev_select[dn].position; dev = &statinfo_cur.dinfo->devices[di]; diskio_current += dev->bytes[DEVSTAT_READ] + dev->bytes[DEVSTAT_WRITE]; for (i = 0; i < MAX_DISKIO_STATS; i++) { if (diskio_stats[i].dev && strcmp(dev_select[dn].device_name, diskio_stats[i].dev) == 0) { diskio_stats[i].current = (dev->bytes[DEVSTAT_READ] + dev->bytes[DEVSTAT_WRITE] - diskio_stats[i].last) / 1024; diskio_stats[i].current_read = (dev->bytes[DEVSTAT_READ] - diskio_stats[i].last_read) / 1024; diskio_stats[i].current_write = (dev->bytes[DEVSTAT_WRITE] - diskio_stats[i].last_write) / 1024; if (dev->bytes[DEVSTAT_READ] + dev->bytes[DEVSTAT_WRITE] < diskio_stats[i].last) { diskio_stats[i].current = 0; } if (dev->bytes[DEVSTAT_READ] < diskio_stats[i].last_read) { diskio_stats[i].current_read = 0; diskio_stats[i].current = diskio_stats[i].current_write; } if (dev->bytes[DEVSTAT_WRITE] < diskio_stats[i].last_write) { diskio_stats[i].current_write = 0; diskio_stats[i].current = diskio_stats[i].current_read; } diskio_stats[i].last = dev->bytes[DEVSTAT_READ] + dev->bytes[DEVSTAT_WRITE]; diskio_stats[i].last_read = dev->bytes[DEVSTAT_READ]; diskio_stats[i].last_write = dev->bytes[DEVSTAT_WRITE]; } } } free(dev_select); } /* Since we return (diskio_total_current - diskio_total_old), * the first frame will be way too high * (it will be equal to diskio_total_current, i.e. all disk I/O since boot). * That's why it is better to return 0 first time; */ if (diskio_setup == 0) { diskio_setup = 1; diskio_value = 0; } else { diskio_value = (unsigned int) ((diskio_current - diskio_prev) / 1024); } diskio_prev = diskio_current; free(statinfo_cur.dinfo); } /* While topless is obviously better, top is also not bad. */ int comparecpu(const void *a, const void *b) { if (((struct process *)a)->amount > ((struct process *)b)->amount) { return -1; } else if (((struct process *)a)->amount < ((struct process *)b)->amount) { return 1; } else { return 0; } } int comparemem(const void *a, const void *b) { if (((struct process *)a)->totalmem > ((struct process *)b)->totalmem) { return -1; } else if (((struct process *)a)->totalmem < ((struct process *)b)->totalmem) { return 1; } else { return 0; } } inline void proc_find_top(struct process **cpu, struct process **mem) { struct kinfo_proc *p; int n_processes; int i, j = 0; struct process *processes; int total_pages; /* we get total pages count again to be sure it is up to date */ if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages) != 0) { CRIT_ERR("Cannot read sysctl \"vm.stats.vm.v_page_count\""); } p = kvm_getprocs(kd, KERN_PROC_PROC, 0, &n_processes); processes = malloc(n_processes * sizeof(struct process)); for (i = 0; i < n_processes; i++) { if (!((p[i].ki_flag & P_SYSTEM)) && p[i].ki_comm != NULL) { processes[j].pid = p[i].ki_pid; processes[j].name = strndup(p[i].ki_comm, text_buffer_size); processes[j].amount = 100.0 * p[i].ki_pctcpu / FSCALE; processes[j].totalmem = (float) (p[i].ki_rssize / (float) total_pages) * 100.0; processes[j].vsize = p[i].ki_size; processes[j].rss = (p[i].ki_rssize * getpagesize()); j++; } } qsort(processes, j - 1, sizeof(struct process), comparemem); for (i = 0; i < 10 && i < n_processes; i++) { struct process *tmp, *ttmp; tmp = malloc(sizeof(struct process)); tmp->pid = processes[i].pid; tmp->amount = processes[i].amount; tmp->totalmem = processes[i].totalmem; tmp->name = strndup(processes[i].name, text_buffer_size); tmp->rss = processes[i].rss; tmp->vsize = processes[i].vsize; ttmp = mem[i]; mem[i] = tmp; if (ttmp != NULL) { free(ttmp->name); free(ttmp); } } qsort(processes, j - 1, sizeof(struct process), comparecpu); for (i = 0; i < 10 && i < n_processes; i++) { struct process *tmp, *ttmp; tmp = malloc(sizeof(struct process)); tmp->pid = processes[i].pid; tmp->amount = processes[i].amount; tmp->totalmem = processes[i].totalmem; tmp->name = strndup(processes[i].name, text_buffer_size); tmp->rss = processes[i].rss; tmp->vsize = processes[i].vsize; ttmp = cpu[i]; cpu[i] = tmp; if (ttmp != NULL) { free(ttmp->name); free(ttmp); } } #if defined(FREEBSD_DEBUG) printf("=====\nmem\n"); for (i = 0; i < 10; i++) { printf("%d: %s(%d) %.2f %ld %ld\n", i, mem[i]->name, mem[i]->pid, mem[i]->totalmem, mem[i]->vsize, mem[i]->rss); } #endif for (i = 0; i < j; i++) { free(processes[i].name); } free(processes); } #if defined(i386) || defined(__i386__) #define APMDEV "/dev/apm" #define APM_UNKNOWN 255 int apm_getinfo(int fd, apm_info_t aip) { if (ioctl(fd, APMIO_GETINFO, aip) == -1) { return -1; } return 0; } char *get_apm_adapter() { int fd; struct apm_info info; char *out; out = (char *) calloc(16, sizeof(char)); fd = open(APMDEV, O_RDONLY); if (fd < 0) { strncpy(out, "ERR", 16); return out; } if (apm_getinfo(fd, &info) != 0) { close(fd); strncpy(out, "ERR", 16); return out; } close(fd); switch (info.ai_acline) { case 0: strncpy(out, "off-line", 16); return out; break; case 1: if (info.ai_batt_stat == 3) { strncpy(out, "charging", 16); return out; } else { strncpy(out, "on-line", 16); return out; } break; default: strncpy(out, "unknown", 16); return out; break; } } char *get_apm_battery_life() { int fd; u_int batt_life; struct apm_info info; char *out; out = (char *) calloc(16, sizeof(char)); fd = open(APMDEV, O_RDONLY); if (fd < 0) { strncpy(out, "ERR", 16); return out; } if (apm_getinfo(fd, &info) != 0) { close(fd); strncpy(out, "ERR", 16); return out; } close(fd); batt_life = info.ai_batt_life; if (batt_life == APM_UNKNOWN) { strncpy(out, "unknown", 16); } else if (batt_life <= 100) { snprintf(out, 16, "%d%%", batt_life); return out; } else { strncpy(out, "ERR", 16); } return out; } char *get_apm_battery_time() { int fd; int batt_time; int h, m, s; struct apm_info info; char *out; out = (char *) calloc(16, sizeof(char)); fd = open(APMDEV, O_RDONLY); if (fd < 0) { strncpy(out, "ERR", 16); return out; } if (apm_getinfo(fd, &info) != 0) { close(fd); strncpy(out, "ERR", 16); return out; } close(fd); batt_time = info.ai_batt_time; if (batt_time == -1) { strncpy(out, "unknown", 16); } else { h = batt_time; s = h % 60; h /= 60; m = h % 60; h /= 60; snprintf(out, 16, "%2d:%02d:%02d", h, m, s); } return out; } #endif void update_entropy(void) { /* mirrorbox: can you do anything equivalent in freebsd? -drphibes. */ } /* empty stub so conky links */ void free_all_processes(void) { }