/* * * Conky, a system monitor, based on torsmo * * Please see COPYING for details * * Copyright (c) 2004, Hannu Saransaari and Lauri Hakkarainen * Copyright (c) 2007 Toni Spets * Copyright (c) 2005-2021 Brenden Matthews, Philip Kovacs, et. al. * (see AUTHORS) * All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "linux.h" #include #include #include #include #include #include #include #include #include "common.h" #include "conky.h" #include "diskio.h" #include "logging.h" #include "net_stat.h" #include "proc.h" #include "temphelper.h" #ifndef HAVE_CLOCK_GETTIME #include #endif #include #include // #include #include #include #include "setting.hh" #include "top.h" #include #include #include #include #include #include #ifdef _NET_IF_H #define _LINUX_IF_H #endif #include #include #include #include #include #include /* The following ifdefs were adapted from gkrellm */ #include #if !defined(MD_MAJOR) #define MD_MAJOR 9 #endif #if !defined(LVM_BLK_MAJOR) #define LVM_BLK_MAJOR 58 #endif #if !defined(NBD_MAJOR) #define NBD_MAJOR 43 #endif #if !defined(DM_MAJOR) #define DM_MAJOR 253 #endif #ifdef BUILD_WLAN #include #endif struct sysfs { int fd; int arg; char devtype[256]; char type[64]; float factor, offset; }; /* To be used inside upspeed/f downspeed/f as ${gw_iface} variable */ char e_iface[50]; /* To use ${iface X} where X is a number and will * return the current X NIC name */ static const unsigned int iface_len = 64U; char interfaces_arr[MAX_NET_INTERFACES][iface_len] = {""}; #define SHORTSTAT_TEMPL "%*s %llu %llu %llu" #define LONGSTAT_TEMPL "%*s %llu %llu %llu " static conky::simple_config_setting top_cpu_separate("top_cpu_separate", false, true); /* This flag tells the linux routines to use the /proc system where possible, * even if other api's are available, e.g. sysinfo() or getloadavg(). * the reason for this is to allow for /proc-based distributed monitoring. * using a flag in this manner creates less confusing code. */ static int prefer_proc = 0; /* To tell 'print_sysfs_sensor' whether to print the temperature * in int or float */ static const char *temp2 = "empty"; void prepare_update(void) {} int update_uptime(void) { #ifdef HAVE_SYSINFO if (!prefer_proc) { struct sysinfo s_info; sysinfo(&s_info); info.uptime = (double)s_info.uptime; } else #endif { static int reported = 0; FILE *fp; if (!(fp = open_file("/proc/uptime", &reported))) { info.uptime = 0.0; return 0; } if (fscanf(fp, "%lf", &info.uptime) <= 0) info.uptime = 0; fclose(fp); } return 0; } int check_mount(struct text_object *obj) { int ret = 0; FILE *mtab; if (!obj->data.s) return 0; if ((mtab = fopen("/proc/mounts", "r"))) { char buf1[256], buf2[129]; while (fgets(buf1, 256, mtab)) { sscanf(buf1, "%*s %128s", buf2); if (!strcmp(obj->data.s, buf2)) { ret = 1; break; } } fclose(mtab); } else { NORM_ERR("Could not open mtab"); } return ret; } /* these things are also in sysinfo except Buffers: * (that's why I'm reading them from proc) */ int update_meminfo(void) { FILE *meminfo_fp; static int reported = 0; /* unsigned int a; */ char buf[256]; /* With multi-threading, calculations that require * multiple steps to reach a final result can cause havok * if the intermediary calculations are directly assigned to the * information struct (they may be read by other functions in the meantime). * These variables keep the calculations local to the function and finish off * the function by assigning the results to the information struct */ unsigned long long sreclaimable = 0, curmem = 0, curbufmem = 0, cureasyfree = 0; info.memmax = info.memdirty = info.swap = info.swapfree = info.swapmax = info.memwithbuffers = info.buffers = info.cached = info.memfree = info.memeasyfree = info.legacymem = info.shmem = info.memavail = info.free_bufcache = 0; if (!(meminfo_fp = open_file("/proc/meminfo", &reported))) { return 0; } while (!feof(meminfo_fp)) { if (fgets(buf, 255, meminfo_fp) == nullptr) { break; } if (strncmp(buf, "MemTotal:", 9) == 0) { sscanf(buf, "%*s %llu", &info.memmax); } else if (strncmp(buf, "MemFree:", 8) == 0) { sscanf(buf, "%*s %llu", &info.memfree); } else if (strncmp(buf, "SwapTotal:", 10) == 0) { sscanf(buf, "%*s %llu", &info.swapmax); } else if (strncmp(buf, "SwapFree:", 9) == 0) { sscanf(buf, "%*s %llu", &info.swapfree); } else if (strncmp(buf, "Buffers:", 8) == 0) { sscanf(buf, "%*s %llu", &info.buffers); } else if (strncmp(buf, "Cached:", 7) == 0) { sscanf(buf, "%*s %llu", &info.cached); } else if (strncmp(buf, "Dirty:", 6) == 0) { sscanf(buf, "%*s %llu", &info.memdirty); } else if (strncmp(buf, "MemAvailable:", 13) == 0) { sscanf(buf, "%*s %llu", &info.memavail); } else if (strncmp(buf, "Shmem:", 6) == 0) { sscanf(buf, "%*s %llu", &info.shmem); } else if (strncmp(buf, "SReclaimable:", 13) == 0) { sscanf(buf, "%*s %llu", &sreclaimable); } } curmem = info.memwithbuffers = info.memmax - info.memfree; cureasyfree = info.memfree; info.swap = info.swapmax - info.swapfree; /* Reclaimable memory: does not include shared memory, which is part of cached but unreclaimable. Includes the reclaimable part of the Slab cache though. Note: when shared memory is swapped out, shmem decreases and swapfree decreases - we want this. */ curbufmem = (info.cached - info.shmem) + info.buffers + sreclaimable; /* Calculate the memory usage. * * The Linux Kernel introduced a new field for memory available, * when possible, use that. * https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=34e431b0ae398fc54ea69ff85ec700722c9da773 */ if (no_buffers.get(*state)) { #if LINUX_VERSION_CODE <= KERNEL_VERSION(3, 14, 0) /* Now ('info.mem' - 'info.bufmem') is the *really used* (aka unreclaimable) memory. When this value reaches the size of the physical RAM, and swap is full or non-present, OOM happens. Therefore this is the value users want to monitor, regarding their RAM. */ curmem -= curbufmem; cureasyfree += curbufmem; #else /* LINUX_VERSION_CODE <= KERNEL_VERSION(3, 14, 0) */ curmem = info.memmax - info.memavail; cureasyfree += curbufmem; #endif /* LINUX_VERSION_CODE <= KERNEL_VERSION(3, 14, 0) */ } /* Now that we know that every calculation is finished we can wrap up * by assigning the values to the information structure */ info.mem = curmem; info.bufmem = curbufmem; info.memeasyfree = cureasyfree; info.legacymem = info.memmax - (info.memfree + info.buffers + info.cached + sreclaimable); info.free_bufcache = info.cached + info.buffers + sreclaimable; fclose(meminfo_fp); return 0; } void print_laptop_mode(struct text_object *obj, char *p, unsigned int p_max_size) { FILE *fp; int val = -1; (void)obj; if ((fp = fopen("/proc/sys/vm/laptop_mode", "r")) != nullptr) { if (fscanf(fp, "%d\n", &val) <= 0) val = 0; fclose(fp); } snprintf(p, p_max_size, "%d", val); } /* my system says: * # cat /sys/block/sda/queue/scheduler * noop [anticipatory] cfq */ void print_ioscheduler(struct text_object *obj, char *p, unsigned int p_max_size) { FILE *fp; char buf[128]; if (!obj->data.s) goto out_fail; snprintf(buf, 127, "/sys/block/%s/queue/scheduler", obj->data.s); if ((fp = fopen(buf, "r")) == nullptr) goto out_fail; while (fscanf(fp, "%127s", buf) == 1) { if (buf[0] == '[') { buf[strlen(buf) - 1] = '\0'; snprintf(p, p_max_size, "%s", buf + 1); fclose(fp); return; } } fclose(fp); out_fail: snprintf(p, p_max_size, "%s", "n/a"); return; } class gw_info_s { public: gw_info_s() : iface(nullptr), ip(nullptr), count(0) {} char *iface; char *ip; std::atomic count; std::mutex mutex; void reset() { std::lock_guard lock(mutex); free_and_zero(iface); free_and_zero(ip); } }; static gw_info_s gw_info; char *save_set_string(char *x, char *y) { if (x != nullptr && strcmp((char *)x, (char *)y)) { free_and_zero(x); x = strndup("multiple", text_buffer_size.get(*state)); } else if (x == nullptr && y != nullptr) { x = strndup(y, text_buffer_size.get(*state)); } return x; } void update_gateway_info_failure(const char *reason) { if (reason != nullptr) { perror(reason); } // 2 pointers to 1 location causes a crash when we try to free them both std::unique_lock lock(gw_info.mutex); free_and_zero(gw_info.iface); free_and_zero(gw_info.ip); gw_info.iface = strndup("failed", text_buffer_size.get(*state)); gw_info.ip = strndup("failed", text_buffer_size.get(*state)); } /* Iface Destination Gateway Flags RefCnt Use Metric Mask MTU Window IRTT */ #define RT_ENTRY_FORMAT "%63s %lx %lx %x %*d %*d %*d %lx %*d %*d %*d\n" FILE *check_procroute() { FILE *fp; if ((fp = fopen("/proc/net/route", "r")) == nullptr) { update_gateway_info_failure("fopen()"); return nullptr; } /* skip over the table header line, which is always present */ if (fscanf(fp, "%*[^\n]\n") < 0) { fclose(fp); return nullptr; } return fp; } int update_gateway_info2(void) { FILE *fp; char iface[iface_len]; unsigned long dest; unsigned long gate; unsigned long mask; unsigned int flags; unsigned int x = 1; unsigned int z = 1; int strcmpreturn; if ((fp = check_procroute()) != nullptr) { while (!feof(fp)) { strcmpreturn = 1; if (fscanf(fp, RT_ENTRY_FORMAT, iface, &dest, &gate, &flags, &mask) != 5) { update_gateway_info_failure("fscanf()"); break; } if (!(dest || mask) && ((flags & RTF_GATEWAY) || !gate)) { snprintf(e_iface, 49, "%s", iface); } if (1U == x) { snprintf(interfaces_arr[x++], iface_len - 1, "%s", iface); continue; } else if (0 == strcmp(iface, interfaces_arr[x - 1])) { continue; } for (z = 1; z < iface_len - 1 && strcmpreturn == 1; z++) { strcmpreturn = strcmp(iface, interfaces_arr[z]); } if (strcmpreturn == 1) { snprintf(interfaces_arr[x++], iface_len - 1, "%s", iface); } } fclose(fp); } return 0; } int update_gateway_info(void) { FILE *fp; struct in_addr ina; char iface[iface_len]; unsigned long dest, gate, mask; unsigned int flags; gw_info.reset(); gw_info.count = 0; if ((fp = check_procroute()) != nullptr) { while (!feof(fp)) { if (fscanf(fp, RT_ENTRY_FORMAT, iface, &dest, &gate, &flags, &mask) != 5) { update_gateway_info_failure("fscanf()"); break; } if (!(dest || mask) && ((flags & RTF_GATEWAY) || !gate)) { gw_info.count++; snprintf(e_iface, 49, "%s", iface); std::unique_lock lock(gw_info.mutex); gw_info.iface = save_set_string(gw_info.iface, iface); ina.s_addr = gate; gw_info.ip = save_set_string(gw_info.ip, inet_ntoa(ina)); } } fclose(fp); } return 0; } void free_gateway_info(struct text_object *obj) { (void)obj; gw_info.reset(); } int gateway_exists(struct text_object *obj) { (void)obj; return !!gw_info.count; } void print_gateway_iface(struct text_object *obj, char *p, unsigned int p_max_size) { (void)obj; std::lock_guard lock(gw_info.mutex); snprintf(p, p_max_size, "%s", gw_info.iface); } void print_gateway_iface2(struct text_object *obj, char *p, unsigned int p_max_size) { long int z = 0; unsigned int x = 1; unsigned int found = 0; char buf[iface_len * iface_len] = {""}; char *buf_ptr = buf; if (0 == strcmp(obj->data.s, "")) { for (; x < iface_len - 1; x++) { if (0 == strcmp("", interfaces_arr[x])) { break; } buf_ptr += snprintf(buf_ptr, iface_len - 1, "%s, ", interfaces_arr[x]); found = 1; } if (1 == found) { --buf_ptr; *(--buf_ptr) = '\0'; } snprintf(p, p_max_size, "%s", buf); return; } z = strtol(obj->data.s, (char **)NULL, 10); if ((iface_len - 1) > z) { snprintf(p, p_max_size, "%s", interfaces_arr[z]); } } void print_gateway_ip(struct text_object *obj, char *p, unsigned int p_max_size) { (void)obj; std::lock_guard lock(gw_info.mutex); snprintf(p, p_max_size, "%s", gw_info.ip); } void update_net_interfaces(FILE *net_dev_fp, bool is_first_update, double time_between_updates) { /* read each interface */ #ifdef BUILD_WLAN // wireless info variables struct wireless_info *winfo; struct iwreq wrq; #endif for (int i = 0; i < MAX_NET_INTERFACES; i++) { struct net_stat *ns; char *s, *p; long long r, t, last_recv, last_trans; /* quit only after all non-header lines from /proc/net/dev parsed */ // FIXME: arbitrary size chosen to keep code simple. char buf[256]; if (fgets(buf, 255, net_dev_fp) == nullptr) { break; } p = buf; /* change char * p to first non-space character, which is the beginning * of the interface name */ while (*p != '\0' && isspace((unsigned char)*p)) { p++; } s = p; /* increment p until the end of the interface name has been reached */ while (*p != '\0' && *p != ':') { p++; } if (*p == '\0') { continue; } /* replace ':' with '\0' in output of /proc/net/dev */ *p = '\0'; p++; /* get pointer to interface statistics with the interface name in s */ ns = get_net_stat(s, nullptr, NULL); ns->up = 1; memset(&(ns->addr.sa_data), 0, 14); memset(ns->addrs, 0, 17 * MAX_NET_INTERFACES + 1); /* Up to 17 chars per ip, max MAX_NET_INTERFACES interfaces. Nasty memory usage... */ /* bytes packets errs drop fifo frame compressed multicast|bytes ... */ sscanf(p, "%lld %*d %*d %*d %*d %*d %*d %*d %lld", &r, &t); /* if the interface is parsed the first time, then set recv and trans * to currently received, meaning the change in network traffic is 0 */ if (ns->last_read_recv == -1) { ns->recv = r; is_first_update = true; ns->last_read_recv = r; } if (ns->last_read_trans == -1) { ns->trans = t; is_first_update = true; ns->last_read_trans = t; } /* move current traffic statistic to last thereby obsoleting the * current statistic */ last_recv = ns->recv; last_trans = ns->trans; /* If recv or trans is less than last time, an overflow happened. * In that case set the last traffic to the current one, don't set * it to 0, else a spike in the download and upload speed will occur! */ if (r < ns->last_read_recv) { last_recv = r; } else { ns->recv += (r - ns->last_read_recv); } ns->last_read_recv = r; if (t < ns->last_read_trans) { last_trans = t; } else { ns->trans += (t - ns->last_read_trans); } ns->last_read_trans = t; /*** ip addr patch ***/ int file_descriptor = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); struct ifconf conf; conf.ifc_buf = (char *)malloc(sizeof(struct ifreq) * MAX_NET_INTERFACES); conf.ifc_len = sizeof(struct ifreq) * MAX_NET_INTERFACES; memset(conf.ifc_buf, 0, conf.ifc_len); ioctl(file_descriptor, SIOCGIFCONF, &conf); for (unsigned int k = 0; k < conf.ifc_len / sizeof(struct ifreq); k++) { struct net_stat *ns2; if (!(((struct ifreq *)conf.ifc_buf) + k)) break; ns2 = get_net_stat(((struct ifreq *)conf.ifc_buf)[k].ifr_ifrn.ifrn_name, nullptr, NULL); ns2->addr = ((struct ifreq *)conf.ifc_buf)[k].ifr_ifru.ifru_addr; char temp_addr[18]; snprintf(temp_addr, sizeof(temp_addr), "%u.%u.%u.%u, ", ns2->addr.sa_data[2] & 255, ns2->addr.sa_data[3] & 255, ns2->addr.sa_data[4] & 255, ns2->addr.sa_data[5] & 255); if (nullptr == strstr(ns2->addrs, temp_addr)) strncpy(ns2->addrs + strlen(ns2->addrs), temp_addr, 17); } close(file_descriptor); free(conf.ifc_buf); /*** end ip addr patch ***/ if (!is_first_update) { /* calculate instantaneous speeds */ ns->net_rec[0] = (ns->recv - last_recv) / time_between_updates; ns->net_trans[0] = (ns->trans - last_trans) / time_between_updates; } unsigned int curtmp1 = 0; unsigned int curtmp2 = 0; /* get an average over the last speed samples */ int samples = net_avg_samples.get(*state); /* is OpenMP actually useful here? How large is samples? > 1000 ? */ #ifdef HAVE_OPENMP #pragma omp parallel for reduction(+ : curtmp1, curtmp2) schedule(dynamic, 10) #endif /* HAVE_OPENMP */ for (int j = 0; j < samples; j++) { curtmp1 = curtmp1 + ns->net_rec[j]; curtmp2 = curtmp2 + ns->net_trans[j]; } ns->recv_speed = curtmp1 / (double)samples; ns->trans_speed = curtmp2 / (double)samples; if (samples > 1) { #ifdef HAVE_OPENMP #pragma omp parallel for schedule(dynamic, 10) #endif /* HAVE_OPENMP */ for (int j = samples; j > 1; j--) { ns->net_rec[j - 1] = ns->net_rec[j - 2]; ns->net_trans[j - 1] = ns->net_trans[j - 2]; } } #ifdef BUILD_WLAN /* update wireless info */ winfo = (struct wireless_info *)malloc(sizeof(struct wireless_info)); memset(winfo, 0, sizeof(struct wireless_info)); int skfd = iw_sockets_open(); if (iw_get_basic_config(skfd, s, &(winfo->b)) > -1) { // set present winfo variables if (iw_get_range_info(skfd, s, &(winfo->range)) >= 0) { winfo->has_range = 1; } if (iw_get_stats(skfd, s, &(winfo->stats), &winfo->range, winfo->has_range) >= 0) { winfo->has_stats = 1; } if (iw_get_ext(skfd, s, SIOCGIWAP, &wrq) >= 0) { winfo->has_ap_addr = 1; memcpy(&(winfo->ap_addr), &(wrq.u.ap_addr), sizeof(sockaddr)); } // get bitrate if (iw_get_ext(skfd, s, SIOCGIWRATE, &wrq) >= 0) { memcpy(&(winfo->bitrate), &(wrq.u.bitrate), sizeof(iwparam)); iw_print_bitrate(ns->bitrate, 16, winfo->bitrate.value); } // get link quality if (winfo->has_range && winfo->has_stats) { bool has_qual_level = (winfo->stats.qual.level != 0) || (winfo->stats.qual.updated & IW_QUAL_DBM); if (has_qual_level && !(winfo->stats.qual.updated & IW_QUAL_QUAL_INVALID)) { ns->link_qual = winfo->stats.qual.qual; if (winfo->range.max_qual.qual > 0) { ns->link_qual_max = winfo->range.max_qual.qual; } } } // get ap mac if (winfo->has_ap_addr) { iw_sawap_ntop(&winfo->ap_addr, ns->ap); } // get essid if (winfo->b.has_essid) { if (winfo->b.essid_on) { snprintf(ns->essid, 34, "%s", winfo->b.essid); } else { snprintf(ns->essid, 34, "%s", "off/any"); } } // get channel and freq if (winfo->b.has_freq) { if (winfo->has_range == 1) { ns->channel = iw_freq_to_channel(winfo->b.freq, &(winfo->range)); iw_print_freq_value(ns->freq, 16, winfo->b.freq); } else { ns->channel = 0; ns->freq[0] = 0; } } snprintf(ns->mode, 16, "%s", iw_operation_mode[winfo->b.mode]); } iw_sockets_close(skfd); free(winfo); #endif } } #ifdef BUILD_IPV6 void update_ipv6_net_stats() { FILE *file; char v6addr[33]; char devname[21]; unsigned int netmask, scope; struct net_stat *ns; struct v6addr *lastv6; // remove the old v6 addresses otherwise they are listed multiple times for (unsigned int i = 0; i < MAX_NET_INTERFACES; i++) { ns = &netstats[i]; while (ns->v6addrs != nullptr) { lastv6 = ns->v6addrs; ns->v6addrs = ns->v6addrs->next; free(lastv6); } } if ((file = fopen(PROCDIR "/net/if_inet6", "r")) == nullptr) { return; } while (fscanf(file, "%32s %*02x %02x %02x %*02x %20s\n", v6addr, &netmask, &scope, devname) != EOF) { ns = get_net_stat(devname, nullptr, NULL); if (ns->v6addrs == nullptr) { lastv6 = (struct v6addr *)malloc(sizeof(struct v6addr)); ns->v6addrs = lastv6; } else { lastv6 = ns->v6addrs; while (lastv6->next) lastv6 = lastv6->next; lastv6->next = (struct v6addr *)malloc(sizeof(struct v6addr)); lastv6 = lastv6->next; } for (int i = 0; i < 16; i++) sscanf(v6addr + 2 * i, "%2hhx", &(lastv6->addr.s6_addr[i])); lastv6->netmask = netmask; switch (scope) { case 0: // global lastv6->scope = 'G'; break; case 16: // host-local lastv6->scope = 'H'; break; case 32: // link-local lastv6->scope = 'L'; break; case 64: // site-local lastv6->scope = 'S'; break; case 128: // compat lastv6->scope = 'C'; break; default: lastv6->scope = '?'; } lastv6->next = nullptr; } fclose(file); } #endif /* BUILD_IPV6 */ /** * Parses information from /proc/net/dev and stores them in ??? * * For the output format of /proc/net/dev @see http://linux.die.net/man/5/proc * * @return always returns 0. May change in the future, e.g. returning non zero * if some error happened **/ int update_net_stats(void) { update_gateway_info(); update_gateway_info2(); FILE *net_dev_fp; static int reported = 0; /* variable to notify the parts averaging the download speed, that this * is the first call ever to this function. This variable can't be used * to decide if this is the first time an interface was parsed as there * are many interfaces, which can be activated and deactivated at arbitrary * times */ static bool is_first_update = true; // FIXME: arbitrary size chosen to keep code simple. char buf[256]; double time_between_updates; /* get delta */ time_between_updates = current_update_time - last_update_time; if (time_between_updates <= 0.0001) { return 0; } /* open file /proc/net/dev. If not something went wrong, clear all * network statistics */ if (!(net_dev_fp = open_file("/proc/net/dev", &reported))) { clear_net_stats(); return 0; } /* ignore first two header lines in file /proc/net/dev. If somethings * goes wrong, e.g. end of file reached, quit. * (Why isn't clear_net_stats called for this case ??? */ char *one = fgets(buf, 255, net_dev_fp); char *two = fgets(buf, 255, net_dev_fp); if (!one || /* garbage */ !two) { /* garbage (field names) */ fclose(net_dev_fp); return 0; } update_net_interfaces(net_dev_fp, is_first_update, time_between_updates); #ifdef BUILD_IPV6 update_ipv6_net_stats(); #endif /* BUILD_IPV6 */ is_first_update = false; fclose(net_dev_fp); return 0; } int result; int update_total_processes(void) { DIR *dir; struct dirent *entry; int ignore1; char ignore2; info.procs = 0; dir = opendir("/proc"); if (dir) { while ((entry = readdir(dir))) { if (sscanf(entry->d_name, "%d%c", &ignore1, &ignore2) == 1) { info.procs++; } } closedir(dir); } return 0; } int update_threads(void) { #ifdef HAVE_SYSINFO if (!prefer_proc) { struct sysinfo s_info; sysinfo(&s_info); info.threads = s_info.procs; } else #endif { static int reported = 0; FILE *fp; if (!(fp = open_file("/proc/loadavg", &reported))) { info.threads = 0; return 0; } if (fscanf(fp, "%*f %*f %*f %*d/%hu", &info.threads) <= 0) info.threads = 0; fclose(fp); } return 0; } #define CPU_SAMPLE_COUNT 15 struct cpu_info { unsigned long long cpu_user; unsigned long long cpu_system; unsigned long long cpu_nice; unsigned long long cpu_idle; unsigned long long cpu_iowait; unsigned long long cpu_irq; unsigned long long cpu_softirq; unsigned long long cpu_steal; unsigned long long cpu_total; unsigned long long cpu_active_total; unsigned long long cpu_last_total; unsigned long long cpu_last_active_total; double cpu_val[CPU_SAMPLE_COUNT]; }; static short cpu_setup = 0; /* Determine if this kernel gives us "extended" statistics information in * /proc/stat. * Kernels around 2.5 and earlier only reported user, system, nice, and * idle values in proc stat. * Kernels around 2.6 and greater report these PLUS iowait, irq, softirq, * and steal */ void determine_longstat(char *buf) { unsigned long long iowait = 0; KFLAG_SETOFF(KFLAG_IS_LONGSTAT); /* scanf will either return -1 or 1 because there is only 1 assignment */ if (sscanf(buf, "%*s %*d %*d %*d %*d %llu", &iowait) > 0) { KFLAG_SETON(KFLAG_IS_LONGSTAT); } } void determine_longstat_file(void) { #define MAX_PROCSTAT_LINELEN 255 FILE *stat_fp; static int reported = 0; char buf[MAX_PROCSTAT_LINELEN + 1]; if (!(stat_fp = open_file("/proc/stat", &reported))) return; while (!feof(stat_fp) && fgets(buf, MAX_PROCSTAT_LINELEN, stat_fp) != nullptr) { if (strncmp(buf, "cpu", 3) == 0) { determine_longstat(buf); break; } } fclose(stat_fp); } void get_cpu_count(void) { FILE *stat_fp; static int reported = 0; char buf[256]; char *str1, *str2, *token, *subtoken; char *saveptr1, *saveptr2; int subtoken1 = -1; int subtoken2 = -1; if (info.cpu_usage) { return; } if (!(stat_fp = open_file("/sys/devices/system/cpu/present", &reported))) { return; } info.cpu_count = 0; while (!feof(stat_fp)) { if (fgets(buf, 255, stat_fp) == nullptr) { break; } // Do some parsing here to handle skipped cpu numbers. For example, // for an AMD FX(tm)-6350 Six-Core Processor /sys/.../present reports // "0,3-7". I assume that chip is really an 8-core die with two cores // disabled... Presumably you could also get "0,3-4,6", and other // combos too... for (str1 = buf;; str1 = nullptr) { token = strtok_r(str1, ",", &saveptr1); if (token == nullptr) break; ++info.cpu_count; subtoken1 = -1; subtoken2 = -1; for (str2 = token;; str2 = nullptr) { subtoken = strtok_r(str2, "-", &saveptr2); if (subtoken == nullptr) break; if (subtoken1 < 0) subtoken1 = strtol(subtoken, nullptr, 10); else subtoken2 = strtol(subtoken, nullptr, 10); } if (subtoken2 > 0) info.cpu_count += subtoken2 - subtoken1; } } info.cpu_usage = (float *)malloc((info.cpu_count + 1) * sizeof(float)); fclose(stat_fp); } #define TMPL_LONGSTAT "%*s %llu %llu %llu %llu %llu %llu %llu %llu" #define TMPL_SHORTSTAT "%*s %llu %llu %llu %llu" int update_stat(void) { FILE *stat_fp; static int reported = 0; struct cpu_info *cpu = nullptr; char buf[256]; int i; unsigned int idx; double curtmp; const char *stat_template = nullptr; unsigned int malloc_cpu_size = 0; extern void *global_cpu; static pthread_mutex_t last_stat_update_mutex = PTHREAD_MUTEX_INITIALIZER; static double last_stat_update = 0.0; float cur_total = 0.0; /* since we use wrappers for this function, the update machinery * can't eliminate double invocations of this function. Check for * them here, otherwise cpu_usage counters are freaking out. */ pthread_mutex_lock(&last_stat_update_mutex); if (last_stat_update == current_update_time) { pthread_mutex_unlock(&last_stat_update_mutex); return 0; } last_stat_update = current_update_time; pthread_mutex_unlock(&last_stat_update_mutex); /* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */ if (!cpu_setup || !info.cpu_usage) { get_cpu_count(); cpu_setup = 1; } if (!stat_template) { stat_template = KFLAG_ISSET(KFLAG_IS_LONGSTAT) ? TMPL_LONGSTAT : TMPL_SHORTSTAT; } if (global_cpu) { cpu = reinterpret_cast(global_cpu); } else { malloc_cpu_size = (info.cpu_count + 1) * sizeof(struct cpu_info); cpu = (struct cpu_info *)malloc(malloc_cpu_size); memset(cpu, 0, malloc_cpu_size); global_cpu = cpu; } if (!(stat_fp = open_file("/proc/stat", &reported))) { info.run_threads = 0; if (info.cpu_usage) { memset(info.cpu_usage, 0, info.cpu_count * sizeof(float)); } return 0; } idx = 0; while (!feof(stat_fp)) { if (fgets(buf, 255, stat_fp) == nullptr) { break; } if (strncmp(buf, "procs_running ", 14) == 0) { sscanf(buf, "%*s %hu", &info.run_threads); } else if (strncmp(buf, "cpu", 3) == 0) { double delta; if (isdigit((unsigned char)buf[3])) { idx++; // just increment here since the CPU index can skip numbers } else { idx = 0; } if (idx > info.cpu_count) { continue; } sscanf(buf, stat_template, &(cpu[idx].cpu_user), &(cpu[idx].cpu_nice), &(cpu[idx].cpu_system), &(cpu[idx].cpu_idle), &(cpu[idx].cpu_iowait), &(cpu[idx].cpu_irq), &(cpu[idx].cpu_softirq), &(cpu[idx].cpu_steal)); cpu[idx].cpu_total = cpu[idx].cpu_user + cpu[idx].cpu_nice + cpu[idx].cpu_system + cpu[idx].cpu_idle + cpu[idx].cpu_iowait + cpu[idx].cpu_irq + cpu[idx].cpu_softirq + cpu[idx].cpu_steal; cpu[idx].cpu_active_total = cpu[idx].cpu_total - (cpu[idx].cpu_idle + cpu[idx].cpu_iowait); delta = current_update_time - last_update_time; if (delta <= 0.001) { break; } cur_total = (float)(cpu[idx].cpu_total - cpu[idx].cpu_last_total); if (cur_total == 0.0) { cpu[idx].cpu_val[0] = 1.0; } else { cpu[idx].cpu_val[0] = (cpu[idx].cpu_active_total - cpu[idx].cpu_last_active_total) / cur_total; } curtmp = 0; int samples = std::min(cpu_avg_samples.get(*state), CPU_SAMPLE_COUNT); for (i = 0; i < samples; i++) { curtmp = curtmp + cpu[idx].cpu_val[i]; } info.cpu_usage[idx] = curtmp / samples; cpu[idx].cpu_last_total = cpu[idx].cpu_total; cpu[idx].cpu_last_active_total = cpu[idx].cpu_active_total; for (i = samples - 1; i > 0 && i < CPU_SAMPLE_COUNT; i--) { cpu[idx].cpu_val[i] = cpu[idx].cpu_val[i - 1]; } } } fclose(stat_fp); return 0; } int update_running_processes(void) { update_stat(); return 0; } int update_cpu_usage(void) { struct timespec tc = {0L, 100L * 1000000L}; update_stat(); if (-1 == (nanosleep(&tc, NULL))) { NORM_ERR("update_cpu_usage(): nanosleep() failed"); return 0; } update_stat(); return 0; } void free_cpu(struct text_object *) { /* no-op */ } // fscanf() that reads floats with points even if you are using a locale where // floats are with commas int fscanf_no_i18n(FILE *stream, const char *format, ...) { int returncode; va_list ap; #ifdef BUILD_I18N char *oldlocale = strdup(setlocale(LC_NUMERIC, nullptr)); setlocale(LC_NUMERIC, "C"); #endif va_start(ap, format); returncode = vfscanf(stream, format, ap); va_end(ap); #ifdef BUILD_I18N setlocale(LC_NUMERIC, oldlocale); free(oldlocale); #endif return returncode; } int update_load_average(void) { #ifdef HAVE_GETLOADAVG if (!prefer_proc) { double v[3]; getloadavg(v, 3); info.loadavg[0] = (float)v[0]; info.loadavg[1] = (float)v[1]; info.loadavg[2] = (float)v[2]; } else #endif { static int reported = 0; FILE *fp; if (!(fp = open_file("/proc/loadavg", &reported))) { info.loadavg[0] = info.loadavg[1] = info.loadavg[2] = 0.0; return 0; } if (fscanf_no_i18n(fp, "%f %f %f", &info.loadavg[0], &info.loadavg[1], &info.loadavg[2]) < 0) info.loadavg[0] = info.loadavg[1] = info.loadavg[2] = 0.0; fclose(fp); } return 0; } /***********************************************************/ /***********************************************************/ /***********************************************************/ static int no_dots(const struct dirent *d) { if (d->d_name[0] == '.') { return 0; } return 1; } static int get_first_file_in_a_directory(const char *dir, char *s, int *reported) { struct dirent **namelist; int i, n; n = scandir(dir, &namelist, no_dots, alphasort); if (n < 0) { if (!reported || !*reported) { NORM_ERR("scandir for %s: %s", dir, strerror(errno)); if (reported) { *reported = 1; } } return 0; } else { if (n == 0) { return 0; } strncpy(s, namelist[0]->d_name, 255); s[255] = '\0'; for (i = 0; i < n; i++) { free(namelist[i]); } free(namelist); return 1; } } /* * Convert @dev "0" (hwmon number) or "k10temp" (hwmon name) to "hwmon2/device" */ static void get_dev_path(const char *dir, const char *dev, char *out_buf) { struct dirent **namelist; char path[256] = {'\0'}; char name[256] = {'\0'}; bool found = false; size_t size; int name_fd; int i; int n; int ret; /* "0" numbered case */ ret = sscanf(dev, "%d", &n); if (ret == 1) { snprintf(out_buf, 255, "hwmon%d/device", n); return; } /* "k10temp" name case, need to search hwmon*->name to find a match */ n = scandir(dir, &namelist, no_dots, alphasort); if (n < 0) { NORM_ERR("scandir for %s: %s", dir, strerror(errno)); goto not_found; } if (n == 0) goto not_found; /* Search each hwmon%s/name */ for (i = 0; i < n; i++) { if (found) continue; snprintf(path, 256, "%s%s/name", dir, namelist[i]->d_name); name_fd = open(path, O_RDONLY); if (name_fd < 0) continue; size = read(name_fd, name, strlen(dev)); if (size < strlen(dev)) { close(name_fd); continue; } ret = strncmp(dev, name, strlen(dev)); if (!ret) { found = true; snprintf(out_buf, 255, "%s/device", namelist[i]->d_name); } close(name_fd); } /* cleanup */ for (i = 0; i < n; i++) free(namelist[i]); free(namelist); if (found) return; not_found: out_buf[0] = '\0'; return; } static int open_sysfs_sensor(const char *dir, const char *dev, const char *type, int n, int *divisor, char *devtype) { char path[256]; char buf[256]; int fd; int divfd; memset(buf, 0, sizeof(buf)); /* if device is nullptr or *, get first */ if (dev == nullptr || strcmp(dev, "*") == 0) { static int reported = 0; if (!get_first_file_in_a_directory(dir, buf, &reported)) { return -1; } dev = buf; } if (strcmp(dir, "/sys/class/hwmon/") == 0) { if (*buf) { /* buf holds result from get_first_file_in_a_directory() above, * e.g. "hwmon0" -- append "/device" */ strncat(buf, "/device", 255 - strnlen(buf, 255)); } else { /* * @dev holds device number N or hwmon name as a string, * convert them as: * "0" -> "hwmon0/device" * "k10temp" -> "hwmon2/device", where hwmon2/name is "k10temp" */ get_dev_path(dir, dev, buf); /* Not found */ if (buf[0] == '\0') { NORM_ERR("can't parse device \"%s\"", dev); return -1; } dev = buf; } } /* change vol to in, tempf to temp */ if (strcmp(type, "vol") == 0) { type = "in"; } else if (strcmp(type, "tempf") == 0) { type = "temp"; } else if (strcmp(type, "temp2") == 0) { type = "temp"; } DBGP("%s: dir=%s dev=%s type=%s n=%d\n", __func__, dir, dev, type, n); /* construct path */ snprintf(path, 255, "%s%s/%s%d_input", dir, dev, type, n); /* first, attempt to open file in /device */ fd = open(path, O_RDONLY); if (fd < 0) { /* if it fails, strip the /device from dev and attempt again */ size_t len_to_trunc = std::max((size_t)7, strnlen(buf, 255)) - 7; buf[len_to_trunc] = 0; snprintf(path, 255, "%s%s/%s%d_input", dir, dev, type, n); fd = open(path, O_RDONLY); if (fd < 0) { NORM_ERR( "can't open '%s': %s\nplease check your device or remove this " "var from " PACKAGE_NAME, path, strerror(errno)); } } strncpy(devtype, path, 255); if (strcmp(type, "in") == 0 || strcmp(type, "temp") == 0 || strcmp(type, "tempf") == 0) { *divisor = 1; } else { *divisor = 0; } /* fan does not use *_div as a read divisor */ if (strcmp("fan", type) == 0) { return fd; } /* test if *_div file exist, open it and use it as divisor */ if (strcmp(type, "tempf") == 0) { snprintf(path, 255, "%s%s/%s%d_div", dir, "one", "two", n); } else { snprintf(path, 255, "%s%s/%s%d_div", dir, dev, type, n); } divfd = open(path, O_RDONLY); if (divfd > 0) { /* read integer */ char divbuf[64]; int divn; divn = read(divfd, divbuf, 63); /* should read until n == 0 but I doubt that kernel will give these * in multiple pieces. :) */ if (divn < 0) { NORM_ERR("open_sysfs_sensor(): can't read from sysfs"); } else { divbuf[divn] = '\0'; *divisor = strtol(divbuf, nullptr, 10); } close(divfd); } return fd; } static double get_sysfs_info(int *fd, int divisor, char *devtype, char *type) { int val = 0; if (*fd <= 0) { return 0; } lseek(*fd, 0, SEEK_SET); /* read integer */ { char buf[64]; int n; n = read(*fd, buf, 63); /* should read until n == 0 but I doubt that kernel will give these * in multiple pieces. :) */ if (n < 0) { NORM_ERR("get_sysfs_info(): read from %s failed\n", devtype); } else { buf[n] = '\0'; val = strtol(buf, nullptr, 10); } } close(*fd); /* open file */ *fd = open(devtype, O_RDONLY); if (*fd < 0) { NORM_ERR("can't open '%s': %s", devtype, strerror(errno)); } /* My dirty hack for computing CPU value * Filedil, from forums.gentoo.org */ /* if (strstr(devtype, "temp1_input") != nullptr) { return -15.096 + 1.4893 * (val / 1000.0); } */ /* divide voltage and temperature by 1000 */ /* or if any other divisor is given, use that */ if (0 == (strcmp(type, "temp2"))) { temp2 = "temp2"; } else { temp2 = "empty"; } if (strcmp(type, "tempf") == 0) { if (divisor > 1) { return ((val / divisor + 40) * 9.0 / 5) - 40; } else if (divisor) { return ((val / 1000.0 + 40) * 9.0 / 5) - 40; } else { return ((val + 40) * 9.0 / 5) - 40; } } else { if (divisor > 1) { return val / divisor; } else if (divisor) { return val / 1000.0; } else { return val; } } } #define HWMON_RESET() \ { \ buf1[0] = 0; \ factor = 1.0; \ offset = 0.0; \ } static void parse_sysfs_sensor(struct text_object *obj, const char *arg, const char *path, const char *type) { char buf1[64], buf2[64]; float factor, offset; int n, found = 0; struct sysfs *sf; memset(buf1, 0, 64); memset(buf2, 0, 64); if (sscanf(arg, "%63s %d %f %f", buf2, &n, &factor, &offset) == 4) found = 1; else HWMON_RESET(); if (!found && sscanf(arg, "%63s %63s %d %f %f", buf1, buf2, &n, &factor, &offset) == 5) found = 1; else if (!found) HWMON_RESET(); if (!found && sscanf(arg, "%63s %63s %d", buf1, buf2, &n) == 3) found = 1; else if (!found) HWMON_RESET(); if (!found && sscanf(arg, "%63s %d", buf2, &n) == 2) found = 1; else if (!found) HWMON_RESET(); if (!found) { obj_be_plain_text(obj, "fail"); return; } DBGP("parsed %s args: '%s' '%s' %d %f %f\n", type, buf1, buf2, n, factor, offset); sf = (struct sysfs *)malloc(sizeof(struct sysfs)); memset(sf, 0, sizeof(struct sysfs)); sf->fd = open_sysfs_sensor(path, (*buf1) ? buf1 : 0, buf2, n, &sf->arg, sf->devtype); strncpy(sf->type, buf2, 63); sf->factor = factor; sf->offset = offset; obj->data.opaque = sf; } #define PARSER_GENERATOR(name, path) \ void parse_##name##_sensor(struct text_object *obj, const char *arg) { \ parse_sysfs_sensor(obj, arg, path, #name); \ } PARSER_GENERATOR(i2c, "/sys/bus/i2c/devices/") PARSER_GENERATOR(hwmon, "/sys/class/hwmon/") PARSER_GENERATOR(platform, "/sys/bus/platform/devices/") void print_sysfs_sensor(struct text_object *obj, char *p, unsigned int p_max_size) { double r; struct sysfs *sf = (struct sysfs *)obj->data.opaque; if (!sf || sf->fd < 0) return; r = get_sysfs_info(&sf->fd, sf->arg, sf->devtype, sf->type); r = r * sf->factor + sf->offset; if (0 == (strcmp(temp2, "temp2"))) { temp_print(p, p_max_size, r, TEMP_CELSIUS, 0); } else if (!strncmp(sf->type, "temp", 4)) { temp_print(p, p_max_size, r, TEMP_CELSIUS, 1); } else if (r >= 100.0 || r == 0) { snprintf(p, p_max_size, "%d", (int)r); } else { snprintf(p, p_max_size, "%.1f", r); } } void free_sysfs_sensor(struct text_object *obj) { struct sysfs *sf = (struct sysfs *)obj->data.opaque; if (!sf) return; if (sf->fd >= 0) close(sf->fd); free_and_zero(obj->data.opaque); } #define CPUFREQ_PREFIX "/sys/devices/system/cpu" #define CPUFREQ_POSTFIX "cpufreq/scaling_cur_freq" /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ char get_freq(char *p_client_buffer, size_t client_buffer_size, const char *p_format, int divisor, unsigned int cpu) { FILE *f; static int reported = 0; char frequency[32]; char s[256]; double freq = 0; if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) { return 0; } if (!prefer_proc) { char current_freq_file[128]; snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu - 1, CPUFREQ_POSTFIX); f = fopen(current_freq_file, "r"); if (f) { /* if there's a cpufreq /sys node, read the current frequency from * this node and divide by 1000 to get Mhz. */ if (fgets(s, sizeof(s), f)) { s[strlen(s) - 1] = '\0'; freq = strtod(s, nullptr); } fclose(f); snprintf(p_client_buffer, client_buffer_size, p_format, (freq / 1000) / divisor); return 1; } } // open the CPU information file f = open_file("/proc/cpuinfo", &reported); if (!f) { perror(PACKAGE_NAME ": Failed to access '/proc/cpuinfo' at get_freq()"); return 0; } // read the file while (fgets(s, sizeof(s), f) != nullptr) { #if defined(__i386) || defined(__x86_64) // and search for the cpu mhz if (strncmp(s, "cpu MHz", 7) == 0 && cpu == 0) { #else #if defined(__alpha) // different on alpha if (strncmp(s, "cycle frequency [Hz]", 20) == 0 && cpu == 0) { #else // this is different on ppc for some reason if (strncmp(s, "clock", 5) == 0 && cpu == 0) { #endif // defined(__alpha) #endif // defined(__i386) || defined(__x86_64) // copy just the number strncpy(frequency, strchr(s, ':') + 2, 32); #if defined(__alpha) // strip " est.\n" frequency[strlen(frequency) - 6] = '\0'; // kernel reports in Hz freq = strtod(frequency, nullptr) / 1000000; #else // strip \n frequency[strlen(frequency) - 1] = '\0'; freq = strtod(frequency, nullptr); #endif break; } if (strncmp(s, "processor", 9) == 0) { cpu--; continue; } } fclose(f); snprintf(p_client_buffer, client_buffer_size, p_format, (float)freq / divisor); return 1; } #define CPUFREQ_GOVERNOR "cpufreq/scaling_governor" /* print the CPU scaling governor */ void print_cpugovernor(struct text_object *obj, char *p, unsigned int p_max_size) { FILE *fp; char buf[64]; unsigned int cpu = obj->data.i; cpu--; snprintf(buf, 63, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu, CPUFREQ_GOVERNOR); if ((fp = fopen(buf, "r")) != nullptr) { while (fscanf(fp, "%63s", buf) == 1) { snprintf(p, p_max_size, "%s", buf); fclose(fp); return; } } } #define CPUFREQ_VOLTAGE "cpufreq/scaling_voltages" /* /sys/devices/system/cpu/cpu0/cpufreq/scaling_voltages looks something * like this: # frequency voltage 1800000 1340 1600000 1292 1400000 1100 1200000 988 1000000 1116 800000 1004 600000 988 * Peter Tarjan (ptarjan@citromail.hu) */ /* return cpu voltage in mV (use divisor=1) or V (use divisor=1000) */ static char get_voltage(char *p_client_buffer, size_t client_buffer_size, const char *p_format, int divisor, unsigned int cpu) { FILE *f; char s[256]; int freq = 0; int voltage = 0; char current_freq_file[128]; int freq_comp = 0; /* build the voltage file name */ cpu--; snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu, CPUFREQ_POSTFIX); if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) { return 0; } /* read the current cpu frequency from the /sys node */ f = fopen(current_freq_file, "r"); if (f) { if (fgets(s, sizeof(s), f)) { s[strlen(s) - 1] = '\0'; freq = strtod(s, nullptr); } fclose(f); } else { fprintf(stderr, PACKAGE_NAME ": Failed to access '%s' at ", current_freq_file); perror("get_voltage()"); return 0; } snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu, CPUFREQ_VOLTAGE); /* use the current cpu frequency to find the corresponding voltage */ f = fopen(current_freq_file, "r"); if (f) { while (!feof(f)) { char line[256]; if (fgets(line, 255, f) == nullptr) { break; } sscanf(line, "%d %d", &freq_comp, &voltage); if (freq_comp == freq) { break; } } fclose(f); } else { fprintf(stderr, PACKAGE_NAME ": Failed to access '%s' at ", current_freq_file); perror("get_voltage()"); return 0; } snprintf(p_client_buffer, client_buffer_size, p_format, (float)voltage / divisor); return 1; } void print_voltage_mv(struct text_object *obj, char *p, unsigned int p_max_size) { static int ok = 1; if (ok) { ok = get_voltage(p, p_max_size, "%.0f", 1, obj->data.i); } } void print_voltage_v(struct text_object *obj, char *p, unsigned int p_max_size) { static int ok = 1; if (ok) { ok = get_voltage(p, p_max_size, "%'.3f", 1000, obj->data.i); } } #define ACPI_FAN_DIR "/proc/acpi/fan/" void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) { static int reported = 0; char buf[256]; char buf2[256]; FILE *fp; if (!p_client_buffer || client_buffer_size <= 0) { return; } /* yeah, slow... :/ */ if (!get_first_file_in_a_directory(ACPI_FAN_DIR, buf, &reported)) { snprintf(p_client_buffer, client_buffer_size, "%s", "no fans?"); return; } snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_FAN_DIR, buf); fp = open_file(buf2, &reported); if (!fp) { snprintf(p_client_buffer, client_buffer_size, "%s", "can't open fan's state file"); return; } memset(buf, 0, sizeof(buf)); if (fscanf(fp, "%*s %99s", buf) <= 0) perror("fscanf()"); fclose(fp); snprintf(p_client_buffer, client_buffer_size, "%s", buf); } #define SYSFS_AC_ADAPTER_DIR "/sys/class/power_supply" #define ACPI_AC_ADAPTER_DIR "/proc/acpi/ac_adapter/" /* Linux 2.6.25 onwards ac adapter info is in /sys/class/power_supply/AC/ On my system I get the following. /sys/class/power_supply/AC/uevent: PHYSDEVPATH=/devices/LNXSYSTM:00/device:00/PNP0A08:00/device:01/PNP0C09:00/ACPI0003:00 PHYSDEVBUS=acpi PHYSDEVDRIVER=ac POWER_SUPPLY_NAME=AC POWER_SUPPLY_TYPE=Mains POWER_SUPPLY_ONLINE=1 Update: it seems the folder name is hardware-dependent. We add an additional adapter argument, specifying the folder name. Update: on some systems it's /sys/class/power_supply/ADP1 instead of /sys/class/power_supply/AC */ void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size, const char *adapter) { static int reported = 0; char buf[256]; char buf2[256]; struct stat sb; FILE *fp; if (!p_client_buffer || client_buffer_size <= 0) { return; } if (adapter) snprintf(buf2, sizeof(buf2), "%s/%s/uevent", SYSFS_AC_ADAPTER_DIR, adapter); else { snprintf(buf2, sizeof(buf2), "%s/AC/uevent", SYSFS_AC_ADAPTER_DIR); if (stat(buf2, &sb) == -1) snprintf(buf2, sizeof(buf2), "%s/ADP1/uevent", SYSFS_AC_ADAPTER_DIR); } if (stat(buf2, &sb) == 0) fp = open_file(buf2, &reported); else fp = 0; if (fp) { /* sysfs processing */ while (!feof(fp)) { if (fgets(buf, sizeof(buf), fp) == nullptr) break; if (strncmp(buf, "POWER_SUPPLY_ONLINE=", 20) == 0) { int online = 0; sscanf(buf, "POWER_SUPPLY_ONLINE=%d", &online); snprintf(p_client_buffer, client_buffer_size, "%s-line", (online ? "on" : "off")); break; } } fclose(fp); } else { /* yeah, slow... :/ */ if (!get_first_file_in_a_directory(ACPI_AC_ADAPTER_DIR, buf, &reported)) { snprintf(p_client_buffer, client_buffer_size, "%s", "no ac_adapters?"); return; } snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_AC_ADAPTER_DIR, buf); fp = open_file(buf2, &reported); if (!fp) { snprintf(p_client_buffer, client_buffer_size, "%s", "No ac adapter found.... where is it?"); return; } memset(buf, 0, sizeof(buf)); if (fscanf(fp, "%*s %99s", buf) <= 0) perror("fscanf()"); fclose(fp); snprintf(p_client_buffer, client_buffer_size, "%s", buf); } } /* /proc/acpi/thermal_zone/THRM/cooling_mode cooling mode: active /proc/acpi/thermal_zone/THRM/polling_frequency /proc/acpi/thermal_zone/THRM/state state: ok /proc/acpi/thermal_zone/THRM/temperature temperature: 45 C /proc/acpi/thermal_zone/THRM/trip_points critical (S5): 73 C passive: 73 C: tc1=4 tc2=3 tsp=40 devices=0xcdf6e6c0 */ #define ACPI_THERMAL_ZONE_DEFAULT "thermal_zone0" #define ACPI_THERMAL_FORMAT "/sys/class/thermal/%s/temp" int open_acpi_temperature(const char *name) { char path[256]; int fd; if (name == nullptr || strcmp(name, "*") == 0) { snprintf(path, 255, ACPI_THERMAL_FORMAT, ACPI_THERMAL_ZONE_DEFAULT); } else { snprintf(path, 255, ACPI_THERMAL_FORMAT, name); } fd = open(path, O_RDONLY); if (fd < 0) { NORM_ERR("can't open '%s': %s", path, strerror(errno)); } return fd; } static double last_acpi_temp; static double last_acpi_temp_time; // the maximum length of the string inside a ACPI_THERMAL_FORMAT file including // the ending 0 #define MAXTHERMZONELEN 6 double get_acpi_temperature(int fd) { if (fd <= 0) { return 0; } /* don't update acpi temperature too often */ if (current_update_time - last_acpi_temp_time < 11.32) { return last_acpi_temp; } last_acpi_temp_time = current_update_time; /* seek to beginning */ lseek(fd, 0, SEEK_SET); /* read */ { char buf[MAXTHERMZONELEN]; int n; n = read(fd, buf, MAXTHERMZONELEN - 1); if (n < 0) { NORM_ERR("can't read fd %d: %s", fd, strerror(errno)); } else { buf[n] = '\0'; sscanf(buf, "%lf", &last_acpi_temp); last_acpi_temp /= 1000; } } return last_acpi_temp; } /* hipo@lepakko hipo $ cat /proc/acpi/battery/BAT1/info present: yes design capacity: 4400 mAh last full capacity: 4064 mAh battery technology: rechargeable design voltage: 14800 mV design capacity warning: 300 mAh design capacity low: 200 mAh capacity granularity 1: 32 mAh capacity granularity 2: 32 mAh model number: 02KT serial number: 16922 battery type: LION OEM info: SANYO */ /* hipo@lepakko conky $ cat /proc/acpi/battery/BAT1/state present: yes capacity state: ok charging state: unknown present rate: 0 mA remaining capacity: 4064 mAh present voltage: 16608 mV */ /* 2213<@jupetkellari> jupet@lagi-unstable:~$ cat /proc/apm 2213<@jupetkellari> 1.16 1.2 0x03 0x01 0xff 0x10 -1% -1 ? 2213<@jupetkellari> (-1 ollee ei akkua kiinni, koska akku on pydll) 2214<@jupetkellari> jupet@lagi-unstable:~$ cat /proc/apm 2214<@jupetkellari> 1.16 1.2 0x03 0x01 0x03 0x09 98% -1 ? 2238<@jupetkellari> 1.16 1.2 0x03 0x00 0x00 0x01 100% -1 ? ilman verkkovirtaa 2239<@jupetkellari> 1.16 1.2 0x03 0x01 0x00 0x01 99% -1 ? verkkovirralla 2240<@jupetkellari> 1.16 1.2 0x03 0x01 0x03 0x09 100% -1 ? verkkovirralla ja monitori pll 2241<@jupetkellari> 1.16 1.2 0x03 0x00 0x00 0x01 99% -1 ? monitori pll mutta ilman verkkovirtaa */ /* Kapil Hari Paranjape Linux 2.6.24 onwards battery info is in /sys/class/power_supply/BAT0/ On my system I get the following. /sys/class/power_supply/BAT0/uevent: PHYSDEVPATH=/devices/LNXSYSTM:00/device:00/PNP0A03:00/device:01/PNP0C09:00/PNP0C0A:00 PHYSDEVBUS=acpi PHYSDEVDRIVER=battery POWER_SUPPLY_NAME=BAT0 POWER_SUPPLY_TYPE=Battery POWER_SUPPLY_STATUS=Discharging POWER_SUPPLY_PRESENT=1 POWER_SUPPLY_TECHNOLOGY=Li-ion POWER_SUPPLY_VOLTAGE_MIN_DESIGN=10800000 POWER_SUPPLY_VOLTAGE_NOW=10780000 POWER_SUPPLY_CURRENT_NOW=13970000 POWER_SUPPLY_ENERGY_FULL_DESIGN=47510000 POWER_SUPPLY_ENERGY_FULL=27370000 POWER_SUPPLY_ENERGY_NOW=11810000 POWER_SUPPLY_MODEL_NAME=IBM-92P1060 POWER_SUPPLY_MANUFACTURER=Panasonic On some systems POWER_SUPPLY_ENERGY_* is replaced by POWER_SUPPLY_CHARGE_* */ /* Tiago Marques Vale Regarding the comment above, since kernel 2.6.36.1 I have POWER_SUPPLY_POWER_NOW instead of POWER_SUPPLY_CURRENT_NOW See http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=532000 */ #define SYSFS_BATTERY_BASE_PATH "/sys/class/power_supply" #define ACPI_BATTERY_BASE_PATH "/proc/acpi/battery" #define APM_PATH "/proc/apm" #define MAX_BATTERY_COUNT 4 static FILE *sysfs_bat_fp[MAX_BATTERY_COUNT] = {nullptr, NULL, NULL, NULL}; static FILE *acpi_bat_fp[MAX_BATTERY_COUNT] = {nullptr, NULL, NULL, NULL}; static FILE *apm_bat_fp[MAX_BATTERY_COUNT] = {nullptr, NULL, NULL, NULL}; static int batteries_initialized = 0; static char batteries[MAX_BATTERY_COUNT][32]; static int acpi_last_full[MAX_BATTERY_COUNT]; static int acpi_design_capacity[MAX_BATTERY_COUNT]; /* e.g. "charging 75%" */ static char last_battery_str[MAX_BATTERY_COUNT][64]; /* e.g. "3h 15m" */ static char last_battery_time_str[MAX_BATTERY_COUNT][64]; static double last_battery_time[MAX_BATTERY_COUNT]; static int last_battery_perct[MAX_BATTERY_COUNT]; static double last_battery_perct_time[MAX_BATTERY_COUNT]; void init_batteries(void) { int idx; if (batteries_initialized) { return; } #ifdef HAVE_OPENMP #pragma omp parallel for schedule(dynamic, 10) #endif /* HAVE_OPENMP */ for (idx = 0; idx < MAX_BATTERY_COUNT; idx++) { batteries[idx][0] = '\0'; } batteries_initialized = 1; } int get_battery_idx(const char *bat) { int idx; for (idx = 0; idx < MAX_BATTERY_COUNT; idx++) { if (!strlen(batteries[idx]) || !strcmp(batteries[idx], bat)) { break; } } /* if not found, enter a new entry */ if (!strlen(batteries[idx])) { snprintf(batteries[idx], 31, "%s", bat); } return idx; } void set_return_value(char *buffer, unsigned int n, int item, int idx); void get_battery_stuff(char *buffer, unsigned int n, const char *bat, int item) { static int idx, rep = 0, rep1 = 0, rep2 = 0; char acpi_path[128]; char sysfs_path[128]; snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat); snprintf(sysfs_path, 127, SYSFS_BATTERY_BASE_PATH "/%s/uevent", bat); init_batteries(); idx = get_battery_idx(bat); /* don't update battery too often */ if (current_update_time - last_battery_time[idx] < 29.5) { set_return_value(buffer, n, item, idx); return; } last_battery_time[idx] = current_update_time; memset(last_battery_str[idx], 0, sizeof(last_battery_str[idx])); memset(last_battery_time_str[idx], 0, sizeof(last_battery_time_str[idx])); /* first try SYSFS if that fails try ACPI */ if (sysfs_bat_fp[idx] == nullptr && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == nullptr) { sysfs_bat_fp[idx] = open_file(sysfs_path, &rep); } if (sysfs_bat_fp[idx] == nullptr && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == nullptr) { acpi_bat_fp[idx] = open_file(acpi_path, &rep1); } if (sysfs_bat_fp[idx] != nullptr) { /* SYSFS */ int present_rate = -1; int remaining_capacity = -1; char charging_state[64]; char present[4]; strncpy(charging_state, "unknown", 64); while (!feof(sysfs_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, sysfs_bat_fp[idx]) == nullptr) break; /* let's just hope units are ok */ if (strncmp(buf, "POWER_SUPPLY_PRESENT=1", 22) == 0) strncpy(present, "yes", 4); else if (strncmp(buf, "POWER_SUPPLY_PRESENT=0", 22) == 0) strncpy(present, "no", 4); else if (strncmp(buf, "POWER_SUPPLY_STATUS=", 20) == 0) sscanf(buf, "POWER_SUPPLY_STATUS=%63s", charging_state); /* present_rate is not the same as the current flowing now but it * is the same value which was used in the past. so we continue the * tradition! */ else if (strncmp(buf, "POWER_SUPPLY_CURRENT_NOW=", 25) == 0) sscanf(buf, "POWER_SUPPLY_CURRENT_NOW=%d", &present_rate); else if (strncmp(buf, "POWER_SUPPLY_POWER_NOW=", 23) == 0) sscanf(buf, "POWER_SUPPLY_POWER_NOW=%d", &present_rate); else if (strncmp(buf, "POWER_SUPPLY_ENERGY_NOW=", 24) == 0) sscanf(buf, "POWER_SUPPLY_ENERGY_NOW=%d", &remaining_capacity); else if (strncmp(buf, "POWER_SUPPLY_ENERGY_FULL=", 25) == 0) sscanf(buf, "POWER_SUPPLY_ENERGY_FULL=%d", &acpi_last_full[idx]); else if (strncmp(buf, "POWER_SUPPLY_CHARGE_NOW=", 24) == 0) sscanf(buf, "POWER_SUPPLY_CHARGE_NOW=%d", &remaining_capacity); else if (strncmp(buf, "POWER_SUPPLY_CHARGE_FULL=", 25) == 0) sscanf(buf, "POWER_SUPPLY_CHARGE_FULL=%d", &acpi_last_full[idx]); } fclose(sysfs_bat_fp[idx]); sysfs_bat_fp[idx] = nullptr; /* Hellf[i]re notes that remaining capacity can exceed acpi_last_full */ if (remaining_capacity > acpi_last_full[idx]) acpi_last_full[idx] = remaining_capacity; /* normalize to 100% */ /* not present */ if (strcmp(present, "No") == 0) { strncpy(last_battery_str[idx], "not present", 64); } /* charging */ else if (strcmp(charging_state, "Charging") == 0) { if (acpi_last_full[idx] != 0 && present_rate > 0) { /* e.g. charging 75% */ snprintf( last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "charging %i%%", (int)(((float)remaining_capacity / acpi_last_full[idx]) * 100)); /* e.g. 2h 37m */ format_seconds( last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, (long)(((float)(acpi_last_full[idx] - remaining_capacity) / present_rate) * 3600)); } else if (acpi_last_full[idx] != 0 && present_rate <= 0) { snprintf( last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "charging %d%%", (int)(((float)remaining_capacity / acpi_last_full[idx]) * 100)); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "%s", "unknown"); } else { strncpy(last_battery_str[idx], "charging", sizeof(last_battery_str[idx]) - 1); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "%s", "unknown"); } } /* discharging */ else if (strncmp(charging_state, "Discharging", 64) == 0) { if (present_rate > 0) { /* e.g. discharging 35% */ snprintf( last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "discharging %i%%", (int)(((float)remaining_capacity / acpi_last_full[idx]) * 100)); /* e.g. 1h 12m */ format_seconds( last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, (long)(((float)remaining_capacity / present_rate) * 3600)); } else if (present_rate == 0) { /* Thanks to Nexox for this one */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "full"); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "%s", "unknown"); } else { snprintf( last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "discharging %d%%", (int)(((float)remaining_capacity / acpi_last_full[idx]) * 100)); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "%s", "unknown"); } } /* charged */ /* thanks to Lukas Zapletal */ else if (strncmp(charging_state, "Charged", 64) == 0 || strncmp(charging_state, "Full", 64) == 0) { /* Below happens with the second battery on my X40, * when the second one is empty and the first one * being charged. */ if (remaining_capacity == 0) strncpy(last_battery_str[idx], "empty", 64); else strncpy(last_battery_str[idx], "charged", 64); } /* unknown, probably full / AC */ else { if (acpi_last_full[idx] != 0 && remaining_capacity != acpi_last_full[idx]) snprintf( last_battery_str[idx], 64, "unknown %d%%", (int)(((float)remaining_capacity / acpi_last_full[idx]) * 100)); else strncpy(last_battery_str[idx], "not present", 64); } } else if (acpi_bat_fp[idx] != nullptr) { /* ACPI */ int present_rate = -1; int remaining_capacity = -1; char charging_state[64]; char present[5]; /* read last full capacity if it's zero */ if (acpi_last_full[idx] == 0) { static int rep3 = 0; char path[128]; FILE *fp; snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat); fp = open_file(path, &rep3); if (fp != nullptr) { while (!feof(fp)) { char b[256]; if (fgets(b, 256, fp) == nullptr) { break; } if (sscanf(b, "last full capacity: %d", &acpi_last_full[idx]) != 0) { break; } } fclose(fp); } } fseek(acpi_bat_fp[idx], 0, SEEK_SET); strncpy(charging_state, "unknown", 8); while (!feof(acpi_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, acpi_bat_fp[idx]) == nullptr) { break; } /* let's just hope units are ok */ if (strncmp(buf, "present:", 8) == 0) { sscanf(buf, "present: %4s", present); } else if (strncmp(buf, "charging state:", 15) == 0) { sscanf(buf, "charging state: %63s", charging_state); } else if (strncmp(buf, "present rate:", 13) == 0) { sscanf(buf, "present rate: %d", &present_rate); } else if (strncmp(buf, "remaining capacity:", 19) == 0) { sscanf(buf, "remaining capacity: %d", &remaining_capacity); } } /* Hellf[i]re notes that remaining capacity can exceed acpi_last_full */ if (remaining_capacity > acpi_last_full[idx]) { /* normalize to 100% */ acpi_last_full[idx] = remaining_capacity; } /* not present */ if (strcmp(present, "no") == 0) { strncpy(last_battery_str[idx], "not present", 64); /* charging */ } else if (strcmp(charging_state, "charging") == 0) { if (acpi_last_full[idx] != 0 && present_rate > 0) { /* e.g. charging 75% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "charging %i%%", (int)((remaining_capacity * 100) / acpi_last_full[idx])); /* e.g. 2h 37m */ format_seconds( last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, (long)(((acpi_last_full[idx] - remaining_capacity) * 3600) / present_rate)); } else if (acpi_last_full[idx] != 0 && present_rate <= 0) { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "charging %d%%", (int)((remaining_capacity * 100) / acpi_last_full[idx])); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "%s", "unknown"); } else { strncpy(last_battery_str[idx], "charging", sizeof(last_battery_str[idx]) - 1); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "%s", "unknown"); } /* discharging */ } else if (strncmp(charging_state, "discharging", 64) == 0) { if (present_rate > 0) { /* e.g. discharging 35% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "discharging %i%%", (int)((remaining_capacity * 100) / acpi_last_full[idx])); /* e.g. 1h 12m */ format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, (long)((remaining_capacity * 3600) / present_rate)); } else if (present_rate == 0) { /* Thanks to Nexox for this one */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "charged"); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "%s", "unknown"); } else { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "discharging %d%%", (int)((remaining_capacity * 100) / acpi_last_full[idx])); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "%s", "unknown"); } /* charged */ } else if (strncmp(charging_state, "charged", 64) == 0) { /* thanks to Lukas Zapletal */ /* Below happens with the second battery on my X40, * when the second one is empty and the first one being charged. */ if (remaining_capacity == 0) { strncpy(last_battery_str[idx], "empty", 6); } else { strncpy(last_battery_str[idx], "charged", 8); } /* unknown, probably full / AC */ } else { if (strncmp(charging_state, "Full", 64) == 0) { strncpy(last_battery_str[idx], "charged", 64); } else if (acpi_last_full[idx] != 0 && remaining_capacity != acpi_last_full[idx]) { snprintf(last_battery_str[idx], 64, "unknown %d%%", (int)((remaining_capacity * 100) / acpi_last_full[idx])); } else { strncpy(last_battery_str[idx], "not present", 64); } } fclose(acpi_bat_fp[idx]); acpi_bat_fp[idx] = nullptr; } else { /* APM */ if (apm_bat_fp[idx] == nullptr) { apm_bat_fp[idx] = open_file(APM_PATH, &rep2); } if (apm_bat_fp[idx] != nullptr) { unsigned int ac, status, flag; int life; if (fscanf(apm_bat_fp[idx], "%*s %*s %*x %x %x %x %d%%", &ac, &status, &flag, &life) <= 0) goto read_bat_fp_end; if (life == -1) { /* could check now that there is ac */ snprintf(last_battery_str[idx], 64, "%s", "not present"); /* could check that status == 3 here? */ } else if (ac && life != 100) { snprintf(last_battery_str[idx], 64, "charging %d%%", life); } else { snprintf(last_battery_str[idx], 64, "%d%%", life); } read_bat_fp_end: /* it seemed to buffer it so file must be closed (or could use * syscalls directly but I don't feel like coding it now) */ fclose(apm_bat_fp[idx]); apm_bat_fp[idx] = nullptr; } } set_return_value(buffer, n, item, idx); } void set_return_value(char *buffer, unsigned int n, int item, int idx) { switch (item) { case BATTERY_STATUS: snprintf(buffer, n, "%s", last_battery_str[idx]); break; case BATTERY_TIME: snprintf(buffer, n, "%s", last_battery_time_str[idx]); break; default: break; } } void get_battery_short_status(char *buffer, unsigned int n, const char *bat) { get_battery_stuff(buffer, n, bat, BATTERY_STATUS); if (0 == strncmp("charging", buffer, 8)) { buffer[0] = 'C'; memmove(buffer + 1, buffer + 8, n - 8); } else if (0 == strncmp("discharging", buffer, 11)) { buffer[0] = 'D'; memmove(buffer + 1, buffer + 11, n - 11); } else if (0 == strncmp("charged", buffer, 7)) { buffer[0] = 'F'; memmove(buffer + 1, buffer + 7, n - 7); } else if (0 == strncmp("not present", buffer, 11)) { buffer[0] = 'N'; memmove(buffer + 1, buffer + 11, n - 11); } else if (0 == strncmp("empty", buffer, 5)) { buffer[0] = 'E'; memmove(buffer + 1, buffer + 5, n - 5); } else if (0 == strncmp("unknown", buffer, 7)) { buffer[0] = 'U'; memmove(buffer + 1, buffer + 7, n - 7); } // Otherwise, don't shorten. } void get_battery_power_draw(char *buffer, unsigned int n, const char *bat) { static int reported = 0; char current_now_path[256], voltage_now_path[256], current_now_val[256], voltage_now_val[256]; char *ptr; long current_now, voltage_now; FILE *current_now_file; FILE *voltage_now_file; double result; snprintf(current_now_path, 255, SYSFS_BATTERY_BASE_PATH "/%s/current_now", bat); snprintf(voltage_now_path, 255, SYSFS_BATTERY_BASE_PATH "/%s/voltage_now", bat); current_now_file = open_file(current_now_path, &reported); voltage_now_file = open_file(voltage_now_path, &reported); if (current_now_file != nullptr && voltage_now_file != nullptr) { fgets(current_now_val, 256, current_now_file); fgets(voltage_now_val, 256, voltage_now_file); current_now = strtol(current_now_val, &ptr, 10); voltage_now = strtol(voltage_now_val, &ptr, 10); result = (double)(current_now*voltage_now)/(double)1000000000000; snprintf(buffer, n, "%.1f", result); } } int _get_battery_perct(const char *bat) { static int reported = 0; int idx; char acpi_path[128]; char sysfs_path[128]; int remaining_capacity = -1; snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat); snprintf(sysfs_path, 127, SYSFS_BATTERY_BASE_PATH "/%s/uevent", bat); idx = get_battery_idx(bat); /* don't update battery too often */ if (current_update_time - last_battery_perct_time[idx] < 30) { return last_battery_perct[idx]; } last_battery_perct_time[idx] = current_update_time; /* Only check for SYSFS or ACPI */ if (sysfs_bat_fp[idx] == nullptr && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == nullptr) { sysfs_bat_fp[idx] = open_file(sysfs_path, &reported); reported = 0; } if (sysfs_bat_fp[idx] == nullptr && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == nullptr) { acpi_bat_fp[idx] = open_file(acpi_path, &reported); } if (sysfs_bat_fp[idx] != nullptr) { /* SYSFS */ while (!feof(sysfs_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, sysfs_bat_fp[idx]) == nullptr) break; if (strncmp(buf, "POWER_SUPPLY_CHARGE_NOW=", 24) == 0) { sscanf(buf, "POWER_SUPPLY_CHARGE_NOW=%d", &remaining_capacity); } else if (strncmp(buf, "POWER_SUPPLY_CHARGE_FULL=", 25) == 0) { sscanf(buf, "POWER_SUPPLY_CHARGE_FULL=%d", &acpi_design_capacity[idx]); } else if (strncmp(buf, "POWER_SUPPLY_ENERGY_NOW=", 24) == 0) { sscanf(buf, "POWER_SUPPLY_ENERGY_NOW=%d", &remaining_capacity); } else if (strncmp(buf, "POWER_SUPPLY_ENERGY_FULL=", 25) == 0) { sscanf(buf, "POWER_SUPPLY_ENERGY_FULL=%d", &acpi_design_capacity[idx]); } } fclose(sysfs_bat_fp[idx]); sysfs_bat_fp[idx] = nullptr; } else if (acpi_bat_fp[idx] != nullptr) { /* ACPI */ /* read last full capacity if it's zero */ if (acpi_design_capacity[idx] == 0) { static int rep2; char path[128]; FILE *fp; snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat); fp = open_file(path, &rep2); if (fp != nullptr) { while (!feof(fp)) { char b[256]; if (fgets(b, 256, fp) == nullptr) { break; } if (sscanf(b, "last full capacity: %d", &acpi_design_capacity[idx]) != 0) { break; } } fclose(fp); } } fseek(acpi_bat_fp[idx], 0, SEEK_SET); while (!feof(acpi_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, acpi_bat_fp[idx]) == nullptr) { break; } if (buf[0] == 'r') { sscanf(buf, "remaining capacity: %d", &remaining_capacity); } } } if (remaining_capacity < 0) { return 0; } /* compute the battery percentage */ last_battery_perct[idx] = (int)(((float)remaining_capacity / acpi_design_capacity[idx]) * 100); if (last_battery_perct[idx] > 100) last_battery_perct[idx] = 100; return last_battery_perct[idx]; } int get_battery_perct(const char *bat) { int idx, n = 0, total_capacity = 0, remaining_capacity; ; #define BATTERY_LEN 8 char battery[BATTERY_LEN]; init_batteries(); /* Check if user asked for the mean percentage of all batteries. */ if (!strcmp(bat, "all")) { for (idx = 0; idx < MAX_BATTERY_COUNT; idx++) { snprintf(battery, BATTERY_LEN - 1, "BAT%d", idx); #undef BATTERY_LEN remaining_capacity = _get_battery_perct(battery); if (remaining_capacity > 0) { total_capacity += remaining_capacity; n++; } } if (n == 0) return 0; else return total_capacity / n; } else { return _get_battery_perct(bat); } } double get_battery_perct_bar(struct text_object *obj) { int idx; get_battery_perct(obj->data.s); idx = get_battery_idx(obj->data.s); return last_battery_perct[idx]; } /* On Apple powerbook and ibook: $ cat /proc/pmu/battery_0 flags : 00000013 charge : 3623 max_charge : 3720 current : 388 voltage : 16787 time rem. : 900 $ cat /proc/pmu/info PMU driver version : 2 PMU firmware version : 0c AC Power : 1 Battery count : 1 */ /* defines as in */ #define PMU_BATT_PRESENT 0x00000001 #define PMU_BATT_CHARGING 0x00000002 static FILE *pmu_battery_fp; static FILE *pmu_info_fp; static char pb_battery_info[3][32]; static double pb_battery_info_update; void powerbook_update_status(unsigned int flags, int ac); void powerbook_update_percentage(long timeval, unsigned int flags, int ac, int charge, int max_charge); void powerbook_update_time(long timeval); #define PMU_PATH "/proc/pmu" void get_powerbook_batt_info(struct text_object *obj, char *buffer, unsigned int n) { static int reported = 0; const char *batt_path = PMU_PATH "/battery_0"; const char *info_path = PMU_PATH "/info"; unsigned int flags = 0; int charge = 0; int max_charge = 1; int ac = -1; long timeval = -1; /* don't update battery too often */ if (current_update_time - pb_battery_info_update < 29.5) { snprintf(buffer, n, "%s", pb_battery_info[obj->data.i]); return; } pb_battery_info_update = current_update_time; if (pmu_battery_fp == nullptr) { pmu_battery_fp = open_file(batt_path, &reported); if (pmu_battery_fp == nullptr) { return; } } rewind(pmu_battery_fp); while (!feof(pmu_battery_fp)) { char buf[32]; if (fgets(buf, sizeof(buf), pmu_battery_fp) == nullptr) { break; } if (buf[0] == 'f') { sscanf(buf, "flags : %8x", &flags); } else if (buf[0] == 'c' && buf[1] == 'h') { sscanf(buf, "charge : %d", &charge); } else if (buf[0] == 'm') { sscanf(buf, "max_charge : %d", &max_charge); } else if (buf[0] == 't') { sscanf(buf, "time rem. : %ld", &timeval); } } pmu_info_fp = open_file(info_path, &reported); if (pmu_info_fp == nullptr) { return; } rewind(pmu_info_fp); while (!feof(pmu_info_fp)) { char buf[32]; if (fgets(buf, sizeof(buf), pmu_info_fp) == nullptr) { break; } if (buf[0] == 'A') { sscanf(buf, "AC Power : %d", &ac); } } powerbook_update_status(flags, ac); powerbook_update_percentage(timeval, flags, ac, charge, max_charge); powerbook_update_time(timeval); snprintf(buffer, n, "%s", pb_battery_info[obj->data.i]); } void powerbook_update_status(unsigned int flags, int ac) { /* update status string */ if ((ac && !(flags & PMU_BATT_PRESENT))) { strncpy(pb_battery_info[PB_BATT_STATUS], "AC", sizeof(pb_battery_info[PB_BATT_STATUS])); } else if (ac && (flags & PMU_BATT_PRESENT) && !(flags & PMU_BATT_CHARGING)) { strncpy(pb_battery_info[PB_BATT_STATUS], "charged", sizeof(pb_battery_info[PB_BATT_STATUS])); } else if ((flags & PMU_BATT_PRESENT) && (flags & PMU_BATT_CHARGING)) { strncpy(pb_battery_info[PB_BATT_STATUS], "charging", sizeof(pb_battery_info[PB_BATT_STATUS])); } else { strncpy(pb_battery_info[PB_BATT_STATUS], "discharging", sizeof(pb_battery_info[PB_BATT_STATUS])); } } void powerbook_update_percentage(long timeval, unsigned int flags, int ac, int charge, int max_charge) { /* update percentage string */ if (timeval == 0 && ac && (flags & PMU_BATT_PRESENT) && !(flags & PMU_BATT_CHARGING)) { snprintf(pb_battery_info[PB_BATT_PERCENT], sizeof(pb_battery_info[PB_BATT_PERCENT]), "%s", "100%%"); } else if (timeval == 0) { snprintf(pb_battery_info[PB_BATT_PERCENT], sizeof(pb_battery_info[PB_BATT_PERCENT]), "%s", "unknown"); } else { snprintf(pb_battery_info[PB_BATT_PERCENT], sizeof(pb_battery_info[PB_BATT_PERCENT]), "%d%%", (charge * 100) / max_charge); } } void powerbook_update_time(long timeval) { /* update time string */ if (timeval == 0) { /* fully charged or battery not present */ snprintf(pb_battery_info[PB_BATT_TIME], sizeof(pb_battery_info[PB_BATT_TIME]), "%s", "unknown"); } else if (timeval < 60 * 60) { /* don't show secs */ format_seconds_short(pb_battery_info[PB_BATT_TIME], sizeof(pb_battery_info[PB_BATT_TIME]), timeval); } else { format_seconds(pb_battery_info[PB_BATT_TIME], sizeof(pb_battery_info[PB_BATT_TIME]), timeval); } } #define ENTROPY_AVAIL_PATH "/proc/sys/kernel/random/entropy_avail" int get_entropy_avail(unsigned int *val) { static int reported = 0; FILE *fp; if (!(fp = open_file(ENTROPY_AVAIL_PATH, &reported))) return 1; if (fscanf(fp, "%u", val) != 1) return 1; fclose(fp); return 0; } #define ENTROPY_POOLSIZE_PATH "/proc/sys/kernel/random/poolsize" int get_entropy_poolsize(unsigned int *val) { static int reported = 0; FILE *fp; if (!(fp = open_file(ENTROPY_POOLSIZE_PATH, &reported))) return 1; if (fscanf(fp, "%u", val) != 1) return 1; fclose(fp); return 0; } void print_disk_protect_queue(struct text_object *obj, char *p, unsigned int p_max_size) { FILE *fp; char path[128]; int state; snprintf(path, 127, "/sys/block/%s/device/unload_heads", obj->data.s); if (access(path, F_OK)) { snprintf(path, 127, "/sys/block/%s/queue/protect", obj->data.s); } if ((fp = fopen(path, "r")) == nullptr) { snprintf(p, p_max_size, "%s", "n/a "); return; } if (fscanf(fp, "%d\n", &state) != 1) { fclose(fp); snprintf(p, p_max_size, "%s", "failed"); return; } fclose(fp); snprintf(p, p_max_size, "%s", (state > 0) ? "frozen" : "free "); } std::unordered_map dev_list; /* Same as sf #2942117 but memoized using a linked list */ int is_disk(char *dev) { std::string orig(dev); std::string syspath("/sys/block/"); char *slash; auto i = dev_list.find(orig); if (i != dev_list.end()) return i->second; while ((slash = strchr(dev, '/'))) *slash = '!'; syspath += dev; return dev_list[orig] = !(access(syspath.c_str(), F_OK)); } int update_diskio(void) { FILE *fp; static int reported = 0; char buf[512], devbuf[64]; unsigned int major, minor; int col_count = 0; struct diskio_stat *cur; unsigned int reads, writes; unsigned int total_reads = 0, total_writes = 0; stats.current = 0; stats.current_read = 0; stats.current_write = 0; if (!(fp = open_file("/proc/diskstats", &reported))) { return 0; } /* read reads and writes from all disks (minor = 0), including cd-roms * and floppies, and sum them up */ while (fgets(buf, 512, fp)) { col_count = sscanf(buf, "%u %u %s %*u %*u %u %*u %*u %*u %u", &major, &minor, devbuf, &reads, &writes); /* ignore subdevices (they have only 3 matching entries in their line) * and virtual devices (LVM, network block devices, RAM disks, Loopback) * * XXX: ignore devices which are part of a SW RAID (MD_MAJOR) */ if (col_count == 5 && major != LVM_BLK_MAJOR && major != NBD_MAJOR && major != RAMDISK_MAJOR && major != LOOP_MAJOR && major != DM_MAJOR) { /* check needed for kernel >= 2.6.31, see sf #2942117 */ if (is_disk(devbuf)) { total_reads += reads; total_writes += writes; } } else { col_count = sscanf(buf, "%u %u %s %*u %u %*u %u", &major, &minor, devbuf, &reads, &writes); if (col_count != 5) { continue; } } cur = stats.next; while (cur && strcmp(devbuf, cur->dev)) cur = cur->next; if (cur) update_diskio_values(cur, reads, writes); } update_diskio_values(&stats, total_reads, total_writes); fclose(fp); return 0; } void print_distribution(struct text_object *obj, char *p, unsigned int p_max_size) { (void)obj; int i, bytes_read; char *buf; struct stat sb; if (stat("/etc/arch-release", &sb) == 0) { snprintf(p, p_max_size, "%s", "Arch Linux"); return; } snprintf(p, p_max_size, "Unknown"); buf = readfile("/proc/version", &bytes_read, 1); if (buf) { /* I am assuming the distribution name is the first string in /proc/version that: - is preceded by a '(' - starts with a capital - is followed by a space and a number but i am not sure if this is always true... */ for (i = 1; i < bytes_read; i++) { if (buf[i - 1] == '(' && buf[i] >= 'A' && buf[i] <= 'Z') break; } if (i < bytes_read) { snprintf(p, p_max_size, "%s", &buf[i]); for (i = 1; p[i]; i++) { if (p[i - 1] == ' ' && p[i] >= '0' && p[i] <= '9') { p[i - 1] = 0; break; } } } free(buf); } } /****************************************** * Calculate cpu total * ******************************************/ #define TMPL_SHORTPROC "%*s %llu %llu %llu %llu" #define TMPL_LONGPROC "%*s %llu %llu %llu %llu %llu %llu %llu %llu" static unsigned long long calc_cpu_total(void) { static unsigned long long previous_total = 0; unsigned long long total = 0; unsigned long long t = 0; int rc; int ps; char line[BUFFER_LEN] = {0}; unsigned long long cpu = 0; unsigned long long niceval = 0; unsigned long long systemval = 0; unsigned long long idle = 0; unsigned long long iowait = 0; unsigned long long irq = 0; unsigned long long softirq = 0; unsigned long long steal = 0; const char *template_ = KFLAG_ISSET(KFLAG_IS_LONGSTAT) ? TMPL_LONGPROC : TMPL_SHORTPROC; ps = open("/proc/stat", O_RDONLY); rc = read(ps, line, BUFFER_LEN - 1); close(ps); if (rc < 0) { return 0; } sscanf(line, template_, &cpu, &niceval, &systemval, &idle, &iowait, &irq, &softirq, &steal); total = cpu + niceval + systemval + idle + iowait + irq + softirq + steal; t = total - previous_total; previous_total = total; return t; } /****************************************** * Calculate each processes cpu * ******************************************/ inline static void calc_cpu_each(unsigned long long total) { float mul = 100.0; if (top_cpu_separate.get(*state)) mul *= info.cpu_count; for (struct process *p = first_process; p; p = p->next) p->amount = mul * (p->user_time + p->kernel_time) / (float)total; } #ifdef BUILD_IOSTATS static void calc_io_each(void) { struct process *p; unsigned long long sum = 0; for (p = first_process; p; p = p->next) sum += p->read_bytes + p->write_bytes; if (sum == 0) sum = 1; /* to avoid having NANs if no I/O occurred */ for (p = first_process; p; p = p->next) p->io_perc = 100.0 * (p->read_bytes + p->write_bytes) / (float)sum; } #endif /* BUILD_IOSTATS */ /****************************************** * Extract information from /proc * ******************************************/ #define PROCFS_TEMPLATE "/proc/%d/stat" #define PROCFS_CMDLINE_TEMPLATE "/proc/%d/cmdline" /* These are the guts that extract information out of /proc. * Anyone hoping to port wmtop should look here first. */ static void process_parse_stat(struct process *process) { char line[BUFFER_LEN] = {0}, filename[BUFFER_LEN], procname[BUFFER_LEN]; char cmdline[BUFFER_LEN] = {0}, cmdline_filename[BUFFER_LEN], cmdline_procname[BUFFER_LEN]; char basename[BUFFER_LEN] = {0}; char tmpstr[BUFFER_LEN] = {0}; char state[4]; int ps, cmdline_ps; unsigned long user_time = 0; unsigned long kernel_time = 0; int rc; int endl; int nice_val; char *lparen, *rparen; struct stat process_stat; snprintf(filename, sizeof(filename), PROCFS_TEMPLATE, process->pid); snprintf(cmdline_filename, sizeof(cmdline_filename), PROCFS_CMDLINE_TEMPLATE, process->pid); ps = open(filename, O_RDONLY); if (ps == -1) { /* The process must have finished in the last few jiffies! */ return; } if (fstat(ps, &process_stat) != 0) { close(ps); return; } process->uid = process_stat.st_uid; /* Mark process as up-to-date. */ process->time_stamp = g_time; rc = read(ps, line, BUFFER_LEN - 1); close(ps); if (rc < 0) { return; } /* Read /proc//cmdline */ cmdline_ps = open(cmdline_filename, O_RDONLY); if (cmdline_ps < 0) { /* The process must have finished in the last few jiffies! */ return; } endl = read(cmdline_ps, cmdline, BUFFER_LEN - 1); close(cmdline_ps); if (endl < 0) { return; } /* Some processes have null-separated arguments (see proc(5)); let's fix it */ int i = endl; while (i && cmdline[i - 1] == 0) { /* Skip past any trailing null characters */ --i; } while (i--) { /* Replace null character between arguments with a space */ if (cmdline[i] == 0) { cmdline[i] = ' '; } } cmdline[endl] = 0; /* We want to transform for example "/usr/bin/python program.py" to "python * program.py" * 1. search for first space * 2. search for last / before first space * 3. copy string from its position */ char *space_ptr = strchr(cmdline, ' '); if (space_ptr == nullptr) { strncpy(tmpstr, cmdline, BUFFER_LEN); } else { long int space_pos = space_ptr - cmdline; strncpy(tmpstr, cmdline, space_pos); tmpstr[space_pos] = 0; } char *slash_ptr = strrchr(tmpstr, '/'); if (slash_ptr == nullptr) { strncpy(cmdline_procname, cmdline, BUFFER_LEN); } else { long int slash_pos = slash_ptr - tmpstr; strncpy(cmdline_procname, cmdline + slash_pos + 1, BUFFER_LEN - slash_pos); cmdline_procname[BUFFER_LEN - slash_pos] = 0; } /* Extract cpu times from data in /proc filesystem */ lparen = strchr(line, '('); rparen = strrchr(line, ')'); if (!lparen || !rparen || rparen < lparen) return; // this should not happen rc = MIN((unsigned)(rparen - lparen - 1), sizeof(procname) - 1); strncpy(procname, lparen + 1, rc); procname[rc] = '\0'; strncpy(basename, procname, strlen(procname) + 1); if (strlen(procname) < strlen(cmdline_procname)) strncpy(procname, cmdline_procname, strlen(cmdline_procname) + 1); rc = sscanf(rparen + 1, "%3s %*s %*s %*s %*s %*s %*s %*s %*s %*s %*s %lu " "%lu %*s %*s %*s %d %*s %*s %*s %llu %llu", state, &process->user_time, &process->kernel_time, &nice_val, &process->vsize, &process->rss); if (rc < 6) { NORM_ERR("scanning data for %s failed, got only %d fields", procname, rc); return; } if (state[0] == 'R') ++info.run_procs; free_and_zero(process->name); free_and_zero(process->basename); process->name = strndup(procname, text_buffer_size.get(*::state)); process->basename = strndup(basename, text_buffer_size.get(*::state)); process->rss *= getpagesize(); process->total_cpu_time = process->user_time + process->kernel_time; if (process->previous_user_time == ULONG_MAX) { process->previous_user_time = process->user_time; } if (process->previous_kernel_time == ULONG_MAX) { process->previous_kernel_time = process->kernel_time; } /* strangely, the values aren't monotonous */ if (process->previous_user_time > process->user_time) process->previous_user_time = process->user_time; if (process->previous_kernel_time > process->kernel_time) process->previous_kernel_time = process->kernel_time; /* store the difference of the user_time */ user_time = process->user_time - process->previous_user_time; kernel_time = process->kernel_time - process->previous_kernel_time; /* backup the process->user_time for next time around */ process->previous_user_time = process->user_time; process->previous_kernel_time = process->kernel_time; /* store only the difference of the user_time here... */ process->user_time = user_time; process->kernel_time = kernel_time; } #ifdef BUILD_IOSTATS #define PROCFS_TEMPLATE_IO "/proc/%d/io" static void process_parse_io(struct process *process) { static const char *read_bytes_str = "read_bytes:"; static const char *write_bytes_str = "write_bytes:"; char line[BUFFER_LEN] = {0}, filename[BUFFER_LEN]; int ps; int rc; char *pos, *endpos; unsigned long long read_bytes, write_bytes; snprintf(filename, sizeof(filename), PROCFS_TEMPLATE_IO, process->pid); ps = open(filename, O_RDONLY); if (ps < 0) { /* The process must have finished in the last few jiffies! * Or, the kernel doesn't support I/O accounting. */ return; } rc = read(ps, line, BUFFER_LEN - 1); close(ps); if (rc < 0) { return; } pos = strstr(line, read_bytes_str); if (pos == nullptr) { /* these should not happen (unless the format of the file changes) */ return; } pos += strlen(read_bytes_str); process->read_bytes = strtoull(pos, &endpos, 10); if (endpos == pos) { return; } pos = strstr(line, write_bytes_str); if (pos == nullptr) { return; } pos += strlen(write_bytes_str); process->write_bytes = strtoull(pos, &endpos, 10); if (endpos == pos) { return; } if (process->previous_read_bytes == ULLONG_MAX) { process->previous_read_bytes = process->read_bytes; } if (process->previous_write_bytes == ULLONG_MAX) { process->previous_write_bytes = process->write_bytes; } /* store the difference of the byte counts */ read_bytes = process->read_bytes - process->previous_read_bytes; write_bytes = process->write_bytes - process->previous_write_bytes; /* backup the counts for next time around */ process->previous_read_bytes = process->read_bytes; process->previous_write_bytes = process->write_bytes; /* store only the difference here... */ process->read_bytes = read_bytes; process->write_bytes = write_bytes; } #endif /* BUILD_IOSTATS */ /****************************************** * Get process structure for process pid * ******************************************/ /* This function seems to hog all of the CPU time. * I can't figure out why - it doesn't do much. */ static void calculate_stats(struct process *process) { /* compute each process cpu usage by reading /proc//stat */ process_parse_stat(process); #ifdef BUILD_IOSTATS process_parse_io(process); #endif /* BUILD_IOSTATS */ /* * Check name against the exclusion list */ /* if (process->counted && exclusion_expression && * !regexec(exclusion_expression, process->name, 0, 0, 0)) * process->counted = 0; */ } /****************************************** * Update process table * ******************************************/ static void update_process_table(void) { DIR *dir; struct dirent *entry; if (!(dir = opendir("/proc"))) { return; } info.run_procs = 0; /* Get list of processes from /proc directory */ while ((entry = readdir(dir))) { pid_t pid; if (sscanf(entry->d_name, "%d", &pid) > 0) { /* compute each process cpu usage */ calculate_stats(get_process(pid)); } } closedir(dir); } void get_top_info(void) { unsigned long long total = 0; total = calc_cpu_total(); /* calculate the total of the processor */ update_process_table(); /* update the table with process list */ calc_cpu_each(total); /* and then the percentage for each task */ #ifdef BUILD_IOSTATS calc_io_each(); /* percentage of I/O for each task */ #endif /* BUILD_IOSTATS */ }