/* -*- mode: c++; c-basic-offset: 4; tab-width: 4; indent-tabs-mode: t -*- * vim: ts=4 sw=4 noet ai cindent syntax=cpp * * Conky, a system monitor, based on torsmo * * Any original torsmo code is licensed under the BSD license * * All code written since the fork of torsmo is licensed under the GPL * * Please see COPYING for details * * Copyright (c) 2005 Adi Zaimi, Dan Piponi , * Dave Clark * Copyright (c) 2005-2012 Brenden Matthews, Philip Kovacs, et. al. * (see AUTHORS) * All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "prioqueue.h" #include "top.h" #include "logging.h" /* hash table size - always a power of 2 */ #define HTABSIZE 256 struct process *first_process = 0; unsigned long g_time = 0; /* a simple hash table to speed up find_process() */ struct proc_hash_entry { struct proc_hash_entry *next; struct process *proc; }; static struct proc_hash_entry proc_hash_table[HTABSIZE]; static void hash_process(struct process *p) { struct proc_hash_entry *phe; static char first_run = 1; int bucket; /* better make sure all next pointers are zero upon first access */ if (first_run) { memset(proc_hash_table, 0, sizeof(struct proc_hash_entry) * HTABSIZE); first_run = 0; } /* get the bucket index */ bucket = p->pid & (HTABSIZE - 1); /* insert a new element on bucket's top */ phe = (struct proc_hash_entry *)malloc(sizeof(struct proc_hash_entry)); phe->proc = p; phe->next = proc_hash_table[bucket].next; proc_hash_table[bucket].next = phe; } static void unhash_process(struct process *p) { struct proc_hash_entry *phe, *tmp; /* get the bucket head */ phe = &proc_hash_table[p->pid & (HTABSIZE - 1)]; /* find the entry pointing to p and drop it */ while (phe->next) { if (phe->next->proc == p) { tmp = phe->next; phe->next = phe->next->next; free(tmp); return; } phe = phe->next; } } static void __unhash_all_processes(struct proc_hash_entry *phe) { if (phe->next) __unhash_all_processes(phe->next); free(phe->next); } static void unhash_all_processes(void) { int i; for (i = 0; i < HTABSIZE; i++) { __unhash_all_processes(&proc_hash_table[i]); proc_hash_table[i].next = NULL; } } struct process *get_first_process(void) { return first_process; } void free_all_processes(void) { struct process *next = NULL, *pr = first_process; while (pr) { next = pr->next; free_and_zero(pr->name); free(pr); pr = next; } first_process = NULL; /* drop the whole hash table */ unhash_all_processes(); } struct process *get_process_by_name(const char *name) { struct process *p = first_process; while (p) { if (p->name && !strcmp(p->name, name)) return p; p = p->next; } return 0; } static struct process *find_process(pid_t pid) { struct proc_hash_entry *phe; phe = &proc_hash_table[pid & (HTABSIZE - 1)]; while (phe->next) { if (phe->next->proc->pid == pid) return phe->next->proc; phe = phe->next; } return NULL; } static struct process *new_process(pid_t pid) { struct process *p = (struct process *) malloc(sizeof(struct process)); /* Do stitching necessary for doubly linked list */ p->previous = NULL; p->next = first_process; if (p->next) { p->next->previous = p; } first_process = p; p->pid = pid; p->name = 0; p->amount = 0; p->user_time = 0; p->total = 0; p->kernel_time = 0; p->previous_user_time = ULONG_MAX; p->previous_kernel_time = ULONG_MAX; p->total_cpu_time = 0; p->vsize = 0; p->rss = 0; #ifdef BUILD_IOSTATS p->read_bytes = 0; p->previous_read_bytes = ULLONG_MAX; p->write_bytes = 0; p->previous_write_bytes = ULLONG_MAX; p->io_perc = 0; #endif /* BUILD_IOSTATS */ p->time_stamp = 0; p->counted = 1; p->changed = 0; /* process_find_name(p); */ /* add the process to the hash table */ hash_process(p); return p; } /* Get / create a new process object and insert it into the process list */ struct process *get_process(pid_t pid) { struct process *p = find_process(pid); return p ? p : new_process(pid); } /****************************************** * Functions * ******************************************/ /****************************************** * Destroy and remove a process * ******************************************/ static void delete_process(struct process *p) { #if defined(PARANOID) assert(p->id == 0x0badfeed); /* * Ensure that deleted processes aren't reused. */ p->id = 0x007babe; #endif /* defined(PARANOID) */ /* * Maintain doubly linked list. */ if (p->next) p->next->previous = p->previous; if (p->previous) p->previous->next = p->next; else first_process = p->next; free_and_zero(p->name); /* remove the process from the hash table */ unhash_process(p); free(p); } /****************************************** * Strip dead process entries * ******************************************/ static void process_cleanup(void) { struct process *p = first_process; while (p) { struct process *current = p; #if defined(PARANOID) assert(p->id == 0x0badfeed); #endif /* defined(PARANOID) */ p = p->next; /* Delete processes that have died */ if (current->time_stamp != g_time) { delete_process(current); } } } /****************************************** * Find the top processes * ******************************************/ /* cpu comparison function for prio queue */ static int compare_cpu(void *va, void *vb) { struct process *a = (struct process *)va, *b = (struct process *)vb; if (b->amount > a->amount) { return 1; } else if (a->amount > b->amount) { return -1; } else { return 0; } } /* mem comparison function for prio queue */ static int compare_mem(void *va, void *vb) { struct process *a = (struct process *)va, *b = (struct process *)vb; if (b->rss > a->rss) { return 1; } else if (a->rss > b->rss) { return -1; } else { return 0; } } /* CPU time comparision function for prio queue */ static int compare_time(void *va, void *vb) { struct process *a = (struct process *)va, *b = (struct process *)vb; if (b->total_cpu_time > a->total_cpu_time) { return 1; } else if (b->total_cpu_time < a->total_cpu_time) { return -1; } else { return 0; } } #ifdef BUILD_IOSTATS /* I/O comparision function for prio queue */ static int compare_io(void *va, void *vb) { struct process *a = (struct process *)va, *b = (struct process *)vb; if (b->io_perc > a->io_perc) { return 1; } else if (a->io_perc > b->io_perc) { return -1; } else { return 0; } } #endif /* BUILD_IOSTATS */ /* ****************************************************************** * * Get a sorted list of the top cpu hogs and top mem hogs. * * Results are stored in the cpu,mem arrays in decreasing order[0-9]. * * ****************************************************************** */ static void process_find_top(struct process **cpu, struct process **mem, struct process **ptime #ifdef BUILD_IOSTATS , struct process **io #endif /* BUILD_IOSTATS */ ) { prio_queue_t cpu_queue, mem_queue, time_queue; #ifdef BUILD_IOSTATS prio_queue_t io_queue; #endif struct process *cur_proc = NULL; int i; if (!top_cpu && !top_mem && !top_time #ifdef BUILD_IOSTATS && !top_io #endif /* BUILD_IOSTATS */ && !top_running ) { return; } cpu_queue = init_prio_queue(); pq_set_compare(cpu_queue, &compare_cpu); pq_set_max_size(cpu_queue, MAX_SP); mem_queue = init_prio_queue(); pq_set_compare(mem_queue, &compare_mem); pq_set_max_size(mem_queue, MAX_SP); time_queue = init_prio_queue(); pq_set_compare(time_queue, &compare_time); pq_set_max_size(time_queue, MAX_SP); #ifdef BUILD_IOSTATS io_queue = init_prio_queue(); pq_set_compare(io_queue, &compare_io); pq_set_max_size(io_queue, MAX_SP); #endif /* g_time is the time_stamp entry for process. It is updated when the * process information is updated to indicate that the process is still * alive (and must not be removed from the process list in * process_cleanup()) */ ++g_time; /* OS-specific function updating process list */ get_top_info(); process_cleanup(); /* cleanup list from exited processes */ cur_proc = first_process; while (cur_proc != NULL) { if (top_cpu) { insert_prio_elem(cpu_queue, cur_proc); } if (top_mem) { insert_prio_elem(mem_queue, cur_proc); } if (top_time) { insert_prio_elem(time_queue, cur_proc); } #ifdef BUILD_IOSTATS if (top_io) { insert_prio_elem(io_queue, cur_proc); } #endif /* BUILD_IOSTATS */ cur_proc = cur_proc->next; } for (i = 0; i < MAX_SP; i++) { if (top_cpu) cpu[i] = (process*)pop_prio_elem(cpu_queue); if (top_mem) mem[i] = (process*)pop_prio_elem(mem_queue); if (top_time) ptime[i] = (process*)pop_prio_elem(time_queue); #ifdef BUILD_IOSTATS if (top_io) io[i] = (process*)pop_prio_elem(io_queue); #endif /* BUILD_IOSTATS */ } free_prio_queue(cpu_queue); free_prio_queue(mem_queue); free_prio_queue(time_queue); #ifdef BUILD_IOSTATS free_prio_queue(io_queue); #endif /* BUILD_IOSTATS */ } int update_top(void) { // XXX: this was a separate callback. and it should be again, as soon as it's possible update_meminfo(); process_find_top(info.cpu, info.memu, info.time #ifdef BUILD_IOSTATS , info.io #endif ); info.first_process = get_first_process(); return 0; } static char *format_time(unsigned long timeval, const int width) { char buf[10]; unsigned long nt; // narrow time, for speed on 32-bit unsigned cc; // centiseconds unsigned nn; // multi-purpose whatever nt = timeval; cc = nt % 100; // centiseconds past second nt /= 100; // total seconds nn = nt % 60; // seconds past the minute nt /= 60; // total minutes if (width >= snprintf(buf, sizeof buf, "%lu:%02u.%02u", nt, nn, cc)) { return strndup(buf, text_buffer_size.get(*state)); } if (width >= snprintf(buf, sizeof buf, "%lu:%02u", nt, nn)) { return strndup(buf, text_buffer_size.get(*state)); } nn = nt % 60; // minutes past the hour nt /= 60; // total hours if (width >= snprintf(buf, sizeof buf, "%lu,%02u", nt, nn)) { return strndup(buf, text_buffer_size.get(*state)); } nn = nt; // now also hours if (width >= snprintf(buf, sizeof buf, "%uh", nn)) { return strndup(buf, text_buffer_size.get(*state)); } nn /= 24; // now days if (width >= snprintf(buf, sizeof buf, "%ud", nn)) { return strndup(buf, text_buffer_size.get(*state)); } nn /= 7; // now weeks if (width >= snprintf(buf, sizeof buf, "%uw", nn)) { return strndup(buf, text_buffer_size.get(*state)); } // well shoot, this outta' fit... return strndup("", text_buffer_size.get(*state)); } struct top_data { struct process **list; int num; int was_parsed; char *s; }; static conky::range_config_setting top_name_width("top_name_width", 0, std::numeric_limits::max(), 15, true); static void print_top_name(struct text_object *obj, char *p, int p_max_size) { struct top_data *td = (struct top_data *)obj->data.opaque; int width; if (!td || !td->list || !td->list[td->num]) return; width = MIN(p_max_size, (int)top_name_width.get(*state) + 1); snprintf(p, width + 1, "%-*s", width, td->list[td->num]->name); } static void print_top_mem(struct text_object *obj, char *p, int p_max_size) { struct top_data *td = (struct top_data *)obj->data.opaque; int width; if (!td || !td->list || !td->list[td->num]) return; width = MIN(p_max_size, 7); snprintf(p, width, "%6.2f", (float) ((float)td->list[td->num]->rss / info.memmax) / 10); } static void print_top_time(struct text_object *obj, char *p, int p_max_size) { struct top_data *td = (struct top_data *)obj->data.opaque; int width; char *timeval; if (!td || !td->list || !td->list[td->num]) return; width = MIN(p_max_size, 10); timeval = format_time(td->list[td->num]->total_cpu_time, 9); snprintf(p, width, "%9s", timeval); free(timeval); } static void print_top_user(struct text_object *obj, char *p, int p_max_size) { struct top_data *td = (struct top_data *)obj->data.opaque; if (!td || !td->list || !td->list[td->num]) return; snprintf(p, p_max_size, "%.8s", getpwuid(td->list[td->num]->uid)->pw_name); } #define PRINT_TOP_GENERATOR(name, width, fmt, field) \ static void print_top_##name(struct text_object *obj, char *p, int p_max_size) \ { \ struct top_data *td = (struct top_data *)obj->data.opaque; \ if (!td || !td->list || !td->list[td->num]) \ return; \ snprintf(p, MIN(p_max_size, width), fmt, td->list[td->num]->field); \ } #define PRINT_TOP_HR_GENERATOR(name, field, denom) \ static void print_top_##name(struct text_object *obj, char *p, int p_max_size) \ { \ struct top_data *td = (struct top_data *)obj->data.opaque; \ if (!td || !td->list || !td->list[td->num]) \ return; \ human_readable(td->list[td->num]->field / denom, p, p_max_size); \ } PRINT_TOP_GENERATOR(cpu, 7, "%6.2f", amount) PRINT_TOP_GENERATOR(pid, 6, "%5i", pid) PRINT_TOP_GENERATOR(uid, 6, "%5i", uid) PRINT_TOP_HR_GENERATOR(mem_res, rss, 1) PRINT_TOP_HR_GENERATOR(mem_vsize, vsize, 1) #ifdef BUILD_IOSTATS PRINT_TOP_HR_GENERATOR(read_bytes, read_bytes, active_update_interval()) PRINT_TOP_HR_GENERATOR(write_bytes, write_bytes, active_update_interval()) PRINT_TOP_GENERATOR(io_perc, 7, "%6.2f", io_perc) #endif /* BUILD_IOSTATS */ static void free_top(struct text_object *obj) { struct top_data *td = (struct top_data *)obj->data.opaque; if (!td) return; free_and_zero(td->s); free_and_zero(obj->data.opaque); } int parse_top_args(const char *s, const char *arg, struct text_object *obj) { struct top_data *td; char buf[64]; int n; if (!arg) { NORM_ERR("top needs arguments"); return 0; } obj->data.opaque = td = (struct top_data *)malloc(sizeof(struct top_data)); memset(td, 0, sizeof(struct top_data)); if (s[3] == 0) { td->list = info.cpu; top_cpu = 1; } else if (strcmp(&s[3], "_mem") == EQUAL) { td->list = info.memu; top_mem = 1; } else if (strcmp(&s[3], "_time") == EQUAL) { td->list = info.time; top_time = 1; #ifdef BUILD_IOSTATS } else if (strcmp(&s[3], "_io") == EQUAL) { td->list = info.io; top_io = 1; #endif /* BUILD_IOSTATS */ } else { #ifdef BUILD_IOSTATS NORM_ERR("Must be top, top_mem, top_time or top_io"); #else /* BUILD_IOSTATS */ NORM_ERR("Must be top, top_mem or top_time"); #endif /* BUILD_IOSTATS */ free_and_zero(obj->data.opaque); return 0; } td->s = strndup(arg, text_buffer_size.get(*state)); if (sscanf(arg, "%63s %i", buf, &n) == 2) { if (strcmp(buf, "name") == EQUAL) { obj->callbacks.print = &print_top_name; } else if (strcmp(buf, "cpu") == EQUAL) { obj->callbacks.print = &print_top_cpu; } else if (strcmp(buf, "pid") == EQUAL) { obj->callbacks.print = &print_top_pid; } else if (strcmp(buf, "mem") == EQUAL) { obj->callbacks.print = &print_top_mem; } else if (strcmp(buf, "time") == EQUAL) { obj->callbacks.print = &print_top_time; } else if (strcmp(buf, "mem_res") == EQUAL) { obj->callbacks.print = &print_top_mem_res; } else if (strcmp(buf, "mem_vsize") == EQUAL) { obj->callbacks.print = &print_top_mem_vsize; } else if (strcmp(buf, "uid") == EQUAL) { obj->callbacks.print = &print_top_uid; } else if (strcmp(buf, "user") == EQUAL) { obj->callbacks.print = &print_top_user; #ifdef BUILD_IOSTATS } else if (strcmp(buf, "io_read") == EQUAL) { obj->callbacks.print = &print_top_read_bytes; } else if (strcmp(buf, "io_write") == EQUAL) { obj->callbacks.print = &print_top_write_bytes; } else if (strcmp(buf, "io_perc") == EQUAL) { obj->callbacks.print = &print_top_io_perc; #endif /* BUILD_IOSTATS */ } else { NORM_ERR("invalid type arg for top"); #ifdef BUILD_IOSTATS NORM_ERR("must be one of: name, cpu, pid, mem, time, mem_res, mem_vsize, " "io_read, io_write, io_perc"); #else /* BUILD_IOSTATS */ NORM_ERR("must be one of: name, cpu, pid, mem, time, mem_res, mem_vsize"); #endif /* BUILD_IOSTATS */ free_and_zero(td->s); free_and_zero(obj->data.opaque); return 0; } if (n < 1 || n > 10) { NORM_ERR("invalid num arg for top. Must be between 1 and 10."); free_and_zero(td->s); free_and_zero(obj->data.opaque); return 0; } else { td->num = n - 1; } } else { NORM_ERR("invalid argument count for top"); free_and_zero(td->s); free_and_zero(obj->data.opaque); return 0; } obj->callbacks.free = &free_top; return 1; }