/* * openbsd.c * Contains OpenBSD specific stuff * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "conky.h" #define MAXSHOWDEVS 16 #define LOG1024 10 #define pagetok(size) ((size) << pageshift) inline void proc_find_top(struct process **cpu, struct process **mem); static short cpu_setup = 0; static kvm_t *kd = 0; struct ifmibdata *data = NULL; size_t len = 0; int init_kvm = 0; int init_sensors = 0; static int kvm_init() { if(init_kvm) return 1; kd = kvm_open(NULL, NULL, NULL, KVM_NO_FILES, NULL); if(kd == NULL) fprintf(stderr, "error opening kvm\n"); else init_kvm = 1; return 1; } /* note: swapmode taken from 'top' source */ /* * swapmode is rewritten by Tobias Weingartner * to be based on the new swapctl(2) system call. */ static int swapmode(int *used, int *total) { struct swapent *swdev; int nswap, rnswap, i; nswap = swapctl(SWAP_NSWAP, 0, 0); if (nswap == 0) return 0; swdev = malloc(nswap * sizeof(*swdev)); if (swdev == NULL) return 0; rnswap = swapctl(SWAP_STATS, swdev, nswap); if (rnswap == -1) return 0; /* if rnswap != nswap, then what? */ /* Total things up */ *total = *used = 0; for (i = 0; i < nswap; i++) { if (swdev[i].se_flags & SWF_ENABLE) { *used += (swdev[i].se_inuse / (1024 / DEV_BSIZE)); *total += (swdev[i].se_nblks / (1024 / DEV_BSIZE)); } } free(swdev); return 1; } void update_uptime() { int mib[2] = { CTL_KERN, KERN_BOOTTIME }; struct timeval boottime; time_t now; size_t size = sizeof (boottime); if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1) && (boottime.tv_sec != 0)) { time(&now); info.uptime = now - boottime.tv_sec; } else { fprintf(stderr, "Could not get uptime\n"); info.uptime = 0; } } void update_meminfo() { static int mib[2] = {CTL_VM, VM_METER}; struct vmtotal vmtotal; size_t size; int pagesize, pageshift, swap_avail, swap_used; pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* get total -- systemwide main memory usage structure */ size = sizeof(vmtotal); if (sysctl(mib, 2, &vmtotal, &size, NULL, 0) < 0) { warn("sysctl failed"); bzero(&vmtotal, sizeof(vmtotal)); } info.memmax = pagetok(vmtotal.t_rm) + pagetok(vmtotal.t_free); info.mem = pagetok(vmtotal.t_rm); if ((swapmode(&swap_used, &swap_avail)) >= 0) { info.swapmax = swap_avail; info.swap = swap_used; } else { info.swapmax = 0; info.swap = 0; } } void update_net_stats() { struct net_stat *ns; double delta; long long r, t, last_recv, last_trans; struct ifaddrs *ifap, *ifa; struct if_data *ifd; /* get delta */ delta = current_update_time - last_update_time; if (delta <= 0.0001) return; if (getifaddrs(&ifap) < 0) return; for (ifa = ifap; ifa; ifa = ifa->ifa_next) { ns = get_net_stat((const char *) ifa->ifa_name); if (ifa->ifa_flags & IFF_UP) { struct ifaddrs *iftmp; ns->up = 1; ns->linkstatus = 1; last_recv = ns->recv; last_trans = ns->trans; if (ifa->ifa_addr->sa_family != AF_LINK) continue; for (iftmp = ifa->ifa_next; iftmp != NULL && strcmp(ifa->ifa_name, iftmp->ifa_name) == 0; iftmp = iftmp->ifa_next) if (iftmp->ifa_addr->sa_family == AF_INET) memcpy(&(ns->addr), iftmp->ifa_addr, iftmp->ifa_addr->sa_len); ifd = (struct if_data *) ifa->ifa_data; r = ifd->ifi_ibytes; t = ifd->ifi_obytes; if (r < ns->last_read_recv) ns->recv += ((long long) 4294967295U - ns->last_read_recv) + r; else ns->recv += (r - ns->last_read_recv); ns->last_read_recv = r; if (t < ns->last_read_trans) ns->trans += ((long long) 4294967295U - ns->last_read_trans) + t; else ns->trans += (t - ns->last_read_trans); ns->last_read_trans = t; /* calculate speeds */ ns->recv_speed = (ns->recv - last_recv) / delta; ns->trans_speed = (ns->trans - last_trans) / delta; } else { ns->up = 0; ns->linkstatus = 0; } } freeifaddrs(ifap); } void update_total_processes() { int n_processes; kvm_init(); kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes); info.procs = n_processes; } void update_running_processes() { struct kinfo_proc2 *p; int n_processes; int i, cnt = 0; kvm_init(); int max_size = sizeof(struct kinfo_proc2); p = kvm_getproc2(kd, KERN_PROC_ALL, 0, max_size, &n_processes); for (i = 0; i < n_processes; i++) { if (p[i].p_stat == SRUN) cnt++; } info.run_procs = cnt; } struct cpu_load_struct { unsigned long load[5]; }; struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} }; long cpu_used, oldtotal, oldused; void get_cpu_count() { /* * FIXME: is it possible to get per cpu stats with openbsd? */ #if 0 int cpu_count = 0; int mib[2] = { CTL_HW, HW_NCPU }; size_t len = sizeof(cpu_count); if (sysctl(mib, 2, &cpu_count, &len, NULL, 0) == 0) info.cpu_count = cpu_count; else /* last resort, 1 cpu */ #endif info.cpu_count = 1; info.cpu_usage = malloc(info.cpu_count * sizeof (float)); if (info.cpu_usage == NULL) CRIT_ERR("malloc"); } void update_cpu_usage() { int mib[2] = { CTL_KERN, KERN_CPTIME }; long used, total; long cp_time[CPUSTATES]; size_t len = sizeof (cp_time); /* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */ if ((cpu_setup == 0) || (!info.cpu_usage)) { get_cpu_count(); cpu_setup = 1; } if (sysctl(mib, 2, &cp_time, &len, NULL, 0) < 0) { (void) fprintf(stderr, "Cannot get kern.cp_time"); } fresh.load[0] = cp_time[CP_USER]; fresh.load[1] = cp_time[CP_NICE]; fresh.load[2] = cp_time[CP_SYS]; fresh.load[3] = cp_time[CP_IDLE]; fresh.load[4] = cp_time[CP_IDLE]; used = fresh.load[0] + fresh.load[1] + fresh.load[2]; total = fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3]; if ((total - oldtotal) != 0) { info.cpu_usage[0] = ((double) (used - oldused)) / (double) (total - oldtotal); } else { info.cpu_usage[0] = 0; } oldused = used; oldtotal = total; } void update_load_average() { double v[3]; getloadavg(v, 3); info.loadavg[0] = (float) v[0]; info.loadavg[1] = (float) v[1]; info.loadavg[2] = (float) v[2]; } /* read sensors from sysctl */ void update_obsd_sensors() { int sensor_cnt, dev, numt, mib[5] = { CTL_HW, HW_SENSORS, 0, 0, 0 }; struct sensor sensor; struct sensordev sensordev; size_t slen,sdlen; enum sensor_type type; slen = sizeof(sensor); sdlen = sizeof(sensordev); sensor_cnt = 0; dev = obsd_sensors.device; // FIXME: read more than one device /* for (dev = 0; dev < MAXSENSORDEVICES; dev++) { */ mib[2] = dev; if(sysctl(mib, 3, &sensordev, &sdlen, NULL, 0) == -1) { if (errno != ENOENT) warn("sysctl"); return; //continue; } for (type = 0; type < SENSOR_MAX_TYPES; type++) { mib[3] = type; for (numt = 0; numt < sensordev.maxnumt[type]; numt++) { mib[4] = numt; if (sysctl(mib, 5, &sensor, &slen, NULL, 0) == -1) { if (errno != ENOENT) warn("sysctl"); continue; } if (sensor.flags & SENSOR_FINVALID) continue; switch (type) { case SENSOR_TEMP: //printf("num: %i value: %.2f\n", sensor.numt, (sensor.value - 273150000) / 1000000.0); obsd_sensors.temp[dev][sensor.numt] = (sensor.value - 273150000) / 1000000.0; break; case SENSOR_FANRPM: //printf("num: %i value: %i\n", sensor.numt, sensor.value); obsd_sensors.fan[dev][sensor.numt] = sensor.value; break; case SENSOR_VOLTS_DC: obsd_sensors.volt[dev][sensor.numt] = sensor.value/1000000.0; break; default: break; } sensor_cnt++; } } /* } */ init_sensors = 1; } /* chipset vendor */ void get_obsd_vendor(char *buf, size_t client_buffer_size) { int mib[2]; mib[0] = CTL_HW; mib[1] = HW_VENDOR; char vendor[64]; size_t size = sizeof(vendor); if(sysctl(mib, 2, vendor, &size, NULL, 0) == -1) { fprintf(stderr, "error reading vendor"); snprintf(buf, client_buffer_size, "unknown"); } else { snprintf(buf, client_buffer_size, "%s", vendor); } } /* chipset name */ void get_obsd_product(char *buf, size_t client_buffer_size) { int mib[2]; mib[0] = CTL_HW; mib[1] = HW_PRODUCT; char product[64]; size_t size = sizeof(product); if(sysctl(mib, 2, product, &size, NULL, 0) == -1) { fprintf(stderr, "error reading product"); snprintf(buf, client_buffer_size, "unknown"); } else { snprintf(buf, client_buffer_size, "%s", product); } } /* rdtsc() and get_freq_dynamic() copied from linux.c */ #if defined(__i386) || defined(__x86_64) __inline__ unsigned long long int rdtsc() { unsigned long long int x; __asm__ volatile(".byte 0x0f, 0x31":"=A" (x)); return (x); } #endif /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ void get_freq_dynamic(char *p_client_buffer, size_t client_buffer_size, char *p_format, int divisor) { #if defined(__i386) || defined(__x86_64) struct timezone tz; struct timeval tvstart, tvstop; unsigned long long cycles[2]; /* gotta be 64 bit */ unsigned int microseconds; /* total time taken */ memset(&tz, 0, sizeof (tz)); /* get this function in cached memory */ gettimeofday(&tvstart, &tz); cycles[0] = rdtsc(); gettimeofday(&tvstart, &tz); /* we don't trust that this is any specific length of time */ usleep(100); cycles[1] = rdtsc(); gettimeofday(&tvstop, &tz); microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) + (tvstop.tv_usec - tvstart.tv_usec); snprintf(p_client_buffer, client_buffer_size, p_format, (float)((cycles[1] - cycles[0]) / microseconds) / divisor); #else get_freq(p_client_buffer, client_buffer_size, p_format, divisor); #endif } /*void*/ char get_freq(char *p_client_buffer, size_t client_buffer_size, char *p_format, int divisor, unsigned int cpu) { int freq = cpu; int mib[2] = { CTL_HW, HW_CPUSPEED }; if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) return 0; size_t size = sizeof(freq); if(sysctl(mib, 2, &freq, &size, NULL, 0) == 0) snprintf(p_client_buffer, client_buffer_size, p_format, (float)freq/divisor); else snprintf(p_client_buffer, client_buffer_size, p_format, 0.0f); return 1; } void update_top() { proc_find_top(info.cpu, info.memu); } void update_wifi_stats() { struct net_stat * ns; struct ifaddrs *ifap, *ifa; struct ifmediareq ifmr; struct ieee80211_nodereq nr; struct ieee80211_bssid bssid; int s,ibssid; /* * Get iface table */ if (getifaddrs(&ifap) < 0) return; for (ifa = ifap; ifa; ifa = ifa->ifa_next) { ns = get_net_stat((const char *) ifa->ifa_name); s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); /* Get media type */ bzero(&ifmr, sizeof(ifmr)); strlcpy(ifmr.ifm_name, ifa->ifa_name, IFNAMSIZ); if (ioctl(s, SIOCGIFMEDIA, (caddr_t) &ifmr) < 0) goto cleanup; /* * We can monitor only wireless interfaces * which not in hostap mode */ if ((ifmr.ifm_active & IFM_IEEE80211) && !(ifmr.ifm_active & IFM_IEEE80211_HOSTAP)) { /* Get wi status */ memset(&bssid, 0, sizeof(bssid)); strlcpy(bssid.i_name, ifa->ifa_name, sizeof(bssid.i_name)); ibssid = ioctl(s, SIOCG80211BSSID, &bssid); bzero(&nr, sizeof(nr)); bcopy(bssid.i_bssid, &nr.nr_macaddr, sizeof(nr.nr_macaddr)); strlcpy(nr.nr_ifname, ifa->ifa_name, sizeof(nr.nr_ifname)); if (ioctl(s, SIOCG80211NODE, &nr) == 0 && nr.nr_rssi) { //if (nr.nr_max_rssi) // printf(" %u%%", IEEE80211_NODEREQ_RSSI(&nr)); //else ns->linkstatus = nr.nr_rssi; } } cleanup: close(s); } } void update_diskio() { return; /* XXX implement? hifi: not sure how */ } /* * While topless is obviously better, top is also not bad. */ int comparecpu(const void *a, const void *b) { if (((struct process *)a)->amount > ((struct process *)b)->amount) return (-1); if (((struct process *)a)->amount < ((struct process *)b)->amount) return (1); return (0); } int comparemem(const void *a, const void *b) { if (((struct process *)a)->totalmem > ((struct process *)b)->totalmem) return (-1); if (((struct process *)a)->totalmem < ((struct process *)b)->totalmem) return (1); return (0); } inline void proc_find_top(struct process **cpu, struct process **mem) { struct kinfo_proc2 *p; int n_processes; int i, j = 0; struct process *processes; int mib[2]; int total_pages; int pagesize = getpagesize(); /* we get total pages count again to be sure it is up to date */ mib[0] = CTL_HW; mib[1] = HW_USERMEM; size_t size = sizeof(total_pages); if(sysctl(mib, 2, &total_pages, &size, NULL, 0) == -1) fprintf(stderr, "error reading nmempages\n"); int max_size = sizeof(struct kinfo_proc2); p = kvm_getproc2(kd, KERN_PROC_ALL, 0, max_size, &n_processes); processes = malloc(n_processes * sizeof (struct process)); for (i = 0; i < n_processes; i++) { if (!((p[i].p_flag & P_SYSTEM)) && p[i].p_comm != NULL) { processes[j].pid = p[i].p_pid; processes[j].name = strdup(p[i].p_comm); processes[j].amount = 100.0 * p[i].p_pctcpu / FSCALE; processes[j].totalmem = (float)(p[i].p_vm_rssize * pagesize / (float)total_pages) * 100.0; j++; } } qsort(processes, j - 1, sizeof (struct process), comparemem); for (i = 0; i < 10; i++) { struct process *tmp, *ttmp; tmp = malloc(sizeof (struct process)); tmp->pid = processes[i].pid; tmp->amount = processes[i].amount; tmp->totalmem = processes[i].totalmem; tmp->name = strdup(processes[i].name); ttmp = mem[i]; mem[i] = tmp; if (ttmp != NULL) { free(ttmp->name); free(ttmp); } } qsort(processes, j - 1, sizeof (struct process), comparecpu); for (i = 0; i < 10; i++) { struct process *tmp, *ttmp; tmp = malloc(sizeof (struct process)); tmp->pid = processes[i].pid; tmp->amount = processes[i].amount; tmp->totalmem = processes[i].totalmem; tmp->name = strdup(processes[i].name); ttmp = cpu[i]; cpu[i] = tmp; if (ttmp != NULL) { free(ttmp->name); free(ttmp); } } for (i = 0; i < j; free(processes[i++].name)); free(processes); } #if defined(i386) || defined(__i386__) #define APMDEV "/dev/apm" #define APM_UNKNOWN 255 int apm_getinfo(int fd, void *null) { if (ioctl(fd, APM_IOC_GETPOWER) == -1) return (-1); return (0); } char *get_apm_adapter() { int fd; struct apm_power_info info; char *out; out = (char *)calloc(16, sizeof (char)); fd = open(APMDEV, O_RDONLY); if (fd < 0) { strncpy(out, "ERR", 16); return (out); } if (apm_getinfo(fd, &info) != 0) { close(fd); strncpy(out, "ERR", 16); return (out); } close(fd); switch (info.ac_state) { case APM_AC_OFF: strncpy(out, "off-line", 16); return (out); break; case APM_AC_ON: if (info.battery_state == APM_BATT_CHARGING) { strncpy(out, "charging", 16); return (out); } else { strncpy(out, "on-line", 16); return (out); } break; default: strncpy(out, "unknown", 16); return (out); break; } } char *get_apm_battery_life() { int fd; u_int batt_life; struct apm_power_info info; char *out; out = (char *)calloc(16, sizeof (char)); fd = open(APMDEV, O_RDONLY); if (fd < 0) { strncpy(out, "ERR", 16); return (out); } if (apm_getinfo(fd, &info) != 0) { close(fd); strncpy(out, "ERR", 16); return (out); } close(fd); batt_life = info.battery_life; if (batt_life <= 100) { snprintf(out, 16, "%d%%", batt_life); return (out); } else strncpy(out, "ERR", 16); return (out); } char *get_apm_battery_time() { int fd; int batt_time; int h, m; struct apm_power_info info; char *out; out = (char *)calloc(16, sizeof (char)); fd = open(APMDEV, O_RDONLY); if (fd < 0) { strncpy(out, "ERR", 16); return (out); } if (apm_getinfo(fd, &info) != 0) { close(fd); strncpy(out, "ERR", 16); return (out); } close(fd); batt_time = info.minutes_left; if (batt_time == -1) strncpy(out, "unknown", 16); else { h = batt_time / 60; m = batt_time % 60; snprintf(out, 16, "%2d:%02d", h, m); } return (out); } #endif /* empty stubs so conky links */ int get_battery_perct(const char *bat) { return (0); } int get_battery_perct_bar(const char *bar) { return (0); } void prepare_update() { return; } void update_entropy (void) { return; } void free_all_processes(void) { return; } double get_acpi_temperature(int fd) { return (0); } void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item) { return; } int open_i2c_sensor(const char *dev, const char *type, int n, int *div, char *devtype) { return (0); } double get_i2c_info(int *fd, int arg, char *devtype, char *type) { return (0); } int open_acpi_temperature(const char *name) { return (0); } void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size) { return; } void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) { return; } void get_adt746x_cpu(char *p_client_buffer, size_t client_buffer_size) { return; } void get_adt746x_fan(char *p_client_buffer, size_t client_buffer_size) { return; }