/*
*
* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2007 Toni Spets
* Copyright (c) 2005-2021 Brenden Matthews, Philip Kovacs, et. al.
* (see AUTHORS)
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include "conky.h"
#include "diskio.h"
#include "logging.h"
#include "net_stat.h"
#include "openbsd.h"
#include "top.h"
#define MAXSHOWDEVS 16
#define LOG1024 10
#define pagetok(size) ((size) << pageshift)
inline void proc_find_top(struct process **cpu, struct process **mem);
static short cpu_setup = 0;
static kvm_t *kd = 0;
struct ifmibdata *data = nullptr;
size_t len = 0;
int init_kvm = 0;
int init_sensors = 0;
static int kvm_init() {
if (init_kvm) { return 1; }
kd = kvm_open(nullptr, NULL, NULL, KVM_NO_FILES, NULL);
if (kd == nullptr) {
NORM_ERR("error opening kvm");
} else {
init_kvm = 1;
}
return 1;
}
/* note: swapmode taken from 'top' source */
/* swapmode is rewritten by Tobias Weingartner
* to be based on the new swapctl(2) system call. */
static int swapmode(int *used, int *total) {
struct swapent *swdev;
int nswap, rnswap, i;
nswap = swapctl(SWAP_NSWAP, 0, 0);
if (nswap == 0) { return 0; }
swdev = malloc(nswap * sizeof(*swdev));
if (swdev == nullptr) { return 0; }
rnswap = swapctl(SWAP_STATS, swdev, nswap);
if (rnswap == -1) {
free(swdev);
return 0;
}
/* if rnswap != nswap, then what? */
/* Total things up */
*total = *used = 0;
for (i = 0; i < nswap; i++) {
if (swdev[i].se_flags & SWF_ENABLE) {
*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
}
}
free(swdev);
return 1;
}
int check_mount(struct text_object *obj) {
/* stub */
(void)obj;
return 0;
}
void update_uptime() {
int mib[2] = {CTL_KERN, KERN_BOOTTIME};
struct timeval boottime;
time_t now;
size_t size = sizeof(boottime);
if ((sysctl(mib, 2, &boottime, &size, nullptr, 0) != -1) &&
(boottime.tv_sec != 0)) {
time(&now);
info.uptime = now - boottime.tv_sec;
} else {
NORM_ERR("Could not get uptime");
info.uptime = 0;
}
}
void update_meminfo() {
static int mib[2] = {CTL_VM, VM_METER};
struct vmtotal vmtotal;
size_t size;
int pagesize, pageshift, swap_avail, swap_used;
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1) {
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* get total -- systemwide main memory usage structure */
size = sizeof(vmtotal);
if (sysctl(mib, 2, &vmtotal, &size, nullptr, 0) < 0) {
warn("sysctl failed");
bzero(&vmtotal, sizeof(vmtotal));
}
info.memmax = pagetok(vmtotal.t_rm) + pagetok(vmtotal.t_free);
info.mem = info.memwithbuffers = pagetok(vmtotal.t_rm);
info.memeasyfree = info.memfree = info.memmax - info.mem;
info.legacymem = info.mem;
if ((swapmode(&swap_used, &swap_avail)) >= 0) {
info.swapmax = swap_avail;
info.swap = swap_used;
info.swapfree = swap_avail - swap_used;
} else {
info.swapmax = 0;
info.swap = 0;
info.swapfree = 0;
}
}
void update_net_stats() {
struct net_stat *ns;
double delta;
long long r, t, last_recv, last_trans;
struct ifaddrs *ifap, *ifa;
struct if_data *ifd;
/* get delta */
delta = current_update_time - last_update_time;
if (delta <= 0.0001) { return; }
if (getifaddrs(&ifap) < 0) { return; }
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *)ifa->ifa_name, nullptr, NULL);
if (ifa->ifa_flags & IFF_UP) {
struct ifaddrs *iftmp;
ns->up = 1;
last_recv = ns->recv;
last_trans = ns->trans;
if (ifa->ifa_addr->sa_family != AF_LINK) { continue; }
for (iftmp = ifa->ifa_next;
iftmp != nullptr && strcmp(ifa->ifa_name, iftmp->ifa_name) == 0;
iftmp = iftmp->ifa_next) {
if (iftmp->ifa_addr->sa_family == AF_INET) {
memcpy(&(ns->addr), iftmp->ifa_addr, iftmp->ifa_addr->sa_len);
}
}
ifd = (struct if_data *)ifa->ifa_data;
r = ifd->ifi_ibytes;
t = ifd->ifi_obytes;
if (r < ns->last_read_recv) {
ns->recv += ((long long)4294967295U - ns->last_read_recv) + r;
} else {
ns->recv += (r - ns->last_read_recv);
}
ns->last_read_recv = r;
if (t < ns->last_read_trans) {
ns->trans += (long long)4294967295U - ns->last_read_trans + t;
} else {
ns->trans += (t - ns->last_read_trans);
}
ns->last_read_trans = t;
/* calculate speeds */
ns->recv_speed = (ns->recv - last_recv) / delta;
ns->trans_speed = (ns->trans - last_trans) / delta;
} else {
ns->up = 0;
}
}
freeifaddrs(ifap);
}
int update_total_processes() {
int n_processes;
kvm_init();
kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
info.procs = n_processes;
return 0;
}
void update_running_processes() {
struct kinfo_proc2 *p;
int n_processes;
int i, cnt = 0;
kvm_init();
int max_size = sizeof(struct kinfo_proc2);
p = kvm_getproc2(kd, KERN_PROC_ALL, 0, max_size, &n_processes);
for (i = 0; i < n_processes; i++) {
if (p[i].p_stat == SRUN) { cnt++; }
}
info.run_procs = cnt;
}
/* new SMP code can be enabled by commenting the following line */
#define OLDCPU
#ifdef OLDCPU
struct cpu_load_struct {
unsigned long load[5];
};
struct cpu_load_struct fresh = {{0, 0, 0, 0, 0}};
long cpu_used, oldtotal, oldused;
#else
#include
int64_t *fresh = nullptr;
/* XXX is 8 enough? - What's the constant for MAXCPU? */
/* allocate this with malloc would be better */
int64_t oldtotal[8], oldused[8];
#endif
void get_cpu_count() {
int cpu_count = 1; /* default to 1 cpu */
#ifndef OLDCPU
int mib[2] = {CTL_HW, HW_NCPU};
size_t len = sizeof(cpu_count);
if (sysctl(mib, 2, &cpu_count, &len, nullptr, 0) != 0) {
NORM_ERR("error getting cpu count, defaulting to 1");
}
#endif
info.cpu_count = cpu_count;
info.cpu_usage = malloc(info.cpu_count * sizeof(float));
if (info.cpu_usage == nullptr) { CRIT_ERR("malloc"); }
#ifndef OLDCPU
assert(fresh == nullptr); /* XXX Is this leaking memory? */
/* XXX Where shall I free this? */
if (nullptr == (fresh = calloc(cpu_count, sizeof(int64_t) * CPUSTATES))) {
CRIT_ERR("calloc");
}
#endif
}
void update_cpu_usage() {
#ifdef OLDCPU
int mib[2] = {CTL_KERN, KERN_CPTIME};
long used, total;
long cp_time[CPUSTATES];
size_t len = sizeof(cp_time);
#else
size_t size;
unsigned int i;
#endif
/* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */
if ((cpu_setup == 0) || (!info.cpu_usage)) {
get_cpu_count();
cpu_setup = 1;
}
#ifdef OLDCPU
if (sysctl(mib, 2, &cp_time, &len, nullptr, 0) < 0) {
NORM_ERR("Cannot get kern.cp_time");
}
fresh.load[0] = cp_time[CP_USER];
fresh.load[1] = cp_time[CP_NICE];
fresh.load[2] = cp_time[CP_SYS];
fresh.load[3] = cp_time[CP_IDLE];
fresh.load[4] = cp_time[CP_IDLE];
used = fresh.load[0] + fresh.load[1] + fresh.load[2];
total = fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3];
if ((total - oldtotal) != 0) {
info.cpu_usage[0] = ((double)(used - oldused)) / (double)(total - oldtotal);
} else {
info.cpu_usage[0] = 0;
}
oldused = used;
oldtotal = total;
#else
if (info.cpu_count > 1) {
size = CPUSTATES * sizeof(int64_t);
for (i = 0; i < info.cpu_count; i++) {
int cp_time_mib[] = {CTL_KERN, KERN_CPTIME2, i};
if (sysctl(cp_time_mib, 3, &(fresh[i * CPUSTATES]), &size, nullptr, 0) <
0) {
NORM_ERR("sysctl kern.cp_time2 failed");
}
}
} else {
int cp_time_mib[] = {CTL_KERN, KERN_CPTIME};
long cp_time_tmp[CPUSTATES];
size = sizeof(cp_time_tmp);
if (sysctl(cp_time_mib, 2, cp_time_tmp, &size, nullptr, 0) < 0) {
NORM_ERR("sysctl kern.cp_time failed");
}
for (i = 0; i < CPUSTATES; i++) { fresh[i] = (int64_t)cp_time_tmp[i]; }
}
/* XXX Do sg with this int64_t => long => double ? float hell. */
for (i = 0; i < info.cpu_count; i++) {
int64_t used, total;
int at = i * CPUSTATES;
used = fresh[at + CP_USER] + fresh[at + CP_NICE] + fresh[at + CP_SYS];
total = used + fresh[at + CP_IDLE];
if ((total - oldtotal[i]) != 0) {
info.cpu_usage[i] =
((double)(used - oldused[i])) / (double)(total - oldtotal[i]);
} else {
info.cpu_usage[i] = 0;
}
oldused[i] = used;
oldtotal[i] = total;
}
#endif
}
void free_cpu(struct text_object *) { /* no-op */
}
void update_load_average() {
double v[3];
getloadavg(v, 3);
info.loadavg[0] = (float)v[0];
info.loadavg[1] = (float)v[1];
info.loadavg[2] = (float)v[2];
}
#define OBSD_MAX_SENSORS 256
static struct obsd_sensors_struct {
int device;
float temp[MAXSENSORDEVICES][OBSD_MAX_SENSORS];
unsigned int fan[MAXSENSORDEVICES][OBSD_MAX_SENSORS];
float volt[MAXSENSORDEVICES][OBSD_MAX_SENSORS];
} obsd_sensors;
static conky::simple_config_setting sensor_device("sensor_device", 0,
false);
/* read sensors from sysctl */
void update_obsd_sensors() {
int sensor_cnt, dev, numt, mib[5] = {CTL_HW, HW_SENSORS, 0, 0, 0};
struct sensor sensor;
struct sensordev sensordev;
size_t slen, sdlen;
enum sensor_type type;
slen = sizeof(sensor);
sdlen = sizeof(sensordev);
sensor_cnt = 0;
dev = obsd_sensors.device; // FIXME: read more than one device
/* for (dev = 0; dev < MAXSENSORDEVICES; dev++) { */
mib[2] = dev;
if (sysctl(mib, 3, &sensordev, &sdlen, nullptr, 0) == -1) {
if (errno != ENOENT) { warn("sysctl"); }
return;
// continue;
}
for (type = 0; type < SENSOR_MAX_TYPES; type++) {
mib[3] = type;
for (numt = 0; numt < sensordev.maxnumt[type]; numt++) {
mib[4] = numt;
if (sysctl(mib, 5, &sensor, &slen, nullptr, 0) == -1) {
if (errno != ENOENT) { warn("sysctl"); }
continue;
}
if (sensor.flags & SENSOR_FINVALID) { continue; }
switch (type) {
case SENSOR_TEMP:
obsd_sensors.temp[dev][sensor.numt] =
(sensor.value - 273150000) / 1000000.0;
break;
case SENSOR_FANRPM:
obsd_sensors.fan[dev][sensor.numt] = sensor.value;
break;
case SENSOR_VOLTS_DC:
obsd_sensors.volt[dev][sensor.numt] = sensor.value / 1000000.0;
break;
default:
break;
}
sensor_cnt++;
}
}
/* } */
init_sensors = 1;
}
void parse_obsd_sensor(struct text_object *obj, const char *arg) {
if (!isdigit((unsigned char)arg[0]) || atoi(&arg[0]) < 0 ||
atoi(&arg[0]) > OBSD_MAX_SENSORS - 1) {
obj->data.l = 0;
NORM_ERR("Invalid sensor number!");
} else
obj->data.l = atoi(&arg[0]);
}
void print_obsd_sensors_temp(struct text_object *obj, char *p, int p_max_size) {
obsd_sensors.device = sensor_device.get(*state);
update_obsd_sensors();
temp_print(p, p_max_size, obsd_sensors.temp[obsd_sensors.device][obj->data.l],
TEMP_CELSIUS, 1);
}
void print_obsd_sensors_fan(struct text_object *obj, char *p, int p_max_size) {
obsd_sensors.device = sensor_device.get(*state);
update_obsd_sensors();
snprintf(p, p_max_size, "%d",
obsd_sensors.fan[obsd_sensors.device][obj->data.l]);
}
void print_obsd_sensors_volt(struct text_object *obj, char *p, int p_max_size) {
obsd_sensors.device = sensor_device.get(*state);
update_obsd_sensors();
snprintf(p, p_max_size, "%.2f",
obsd_sensors.volt[obsd_sensors.device][obj->data.l]);
}
/* chipset vendor */
void get_obsd_vendor(struct text_object *obj, char *buf,
size_t client_buffer_size) {
int mib[2];
char vendor[64];
size_t size = sizeof(vendor);
(void)obj;
mib[0] = CTL_HW;
mib[1] = HW_VENDOR;
if (sysctl(mib, 2, vendor, &size, nullptr, 0) == -1) {
NORM_ERR("error reading vendor");
snprintf(buf, client_buffer_size, "%s", "unknown");
} else {
snprintf(buf, client_buffer_size, "%s", vendor);
}
}
/* chipset name */
void get_obsd_product(struct text_object *obj, char *buf,
size_t client_buffer_size) {
int mib[2];
char product[64];
size_t size = sizeof(product);
(void)obj;
mib[0] = CTL_HW;
mib[1] = HW_PRODUCT;
if (sysctl(mib, 2, product, &size, nullptr, 0) == -1) {
NORM_ERR("error reading product");
snprintf(buf, client_buffer_size, "%s", "unknown");
} else {
snprintf(buf, client_buffer_size, "%s", product);
}
}
/* void */
char get_freq(char *p_client_buffer, size_t client_buffer_size,
const char *p_format, int divisor, unsigned int cpu) {
int freq = cpu;
int mib[2] = {CTL_HW, HW_CPUSPEED};
if (!p_client_buffer || client_buffer_size <= 0 || !p_format ||
divisor <= 0) {
return 0;
}
size_t size = sizeof(freq);
if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) {
snprintf(p_client_buffer, client_buffer_size, p_format,
(float)freq / divisor);
} else {
snprintf(p_client_buffer, client_buffer_size, p_format, 0.0f);
}
return 1;
}
#if 0
/* deprecated, will rewrite this soon in update_net_stats() -hifi */
void update_wifi_stats()
{
struct net_stat *ns;
struct ifaddrs *ifap, *ifa;
struct ifmediareq ifmr;
struct ieee80211_nodereq nr;
struct ieee80211_bssid bssid;
int s, ibssid;
/* Get iface table */
if (getifaddrs(&ifap) < 0) {
return;
}
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *) ifa->ifa_name);
s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
/* Get media type */
bzero(&ifmr, sizeof(ifmr));
strlcpy(ifmr.ifm_name, ifa->ifa_name, IFNAMSIZ);
if (ioctl(s, SIOCGIFMEDIA, (caddr_t) &ifmr) < 0) {
close(s);
return;
}
/* We can monitor only wireless interfaces
* which are not in hostap mode */
if ((ifmr.ifm_active & IFM_IEEE80211)
&& !(ifmr.ifm_active & IFM_IEEE80211_HOSTAP)) {
/* Get wi status */
memset(&bssid, 0, sizeof(bssid));
strlcpy(bssid.i_name, ifa->ifa_name, sizeof(bssid.i_name));
ibssid = ioctl(s, SIOCG80211BSSID, &bssid);
bzero(&nr, sizeof(nr));
bcopy(bssid.i_bssid, &nr.nr_macaddr, sizeof(nr.nr_macaddr));
strlcpy(nr.nr_ifname, ifa->ifa_name, sizeof(nr.nr_ifname));
if (ioctl(s, SIOCG80211NODE, &nr) == 0 && nr.nr_rssi) {
ns->linkstatus = nr.nr_rssi;
}
}
cleanup:
close(s);
}
}
#endif
void clear_diskio_stats() {}
struct diskio_stat *prepare_diskio_stat(const char *s) {}
void update_diskio() { return; /* XXX: implement? hifi: not sure how */ }
/* While topless is obviously better, top is also not bad. */
void get_top_info(void) {
struct kinfo_proc2 *p;
struct process *proc;
int n_processes;
int i;
kvm_init();
p = kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2),
&n_processes);
for (i = 0; i < n_processes; i++) {
if (!((p[i].p_flag & P_SYSTEM)) && p[i].p_comm != nullptr) {
proc = find_process(p[i].p_pid);
if (!proc) proc = new_process(p[i].p_pid);
proc->time_stamp = g_time;
proc->name = strndup(p[i].p_comm, text_buffer_size);
proc->amount = 100.0 * p[i].p_pctcpu / FSCALE;
/* TODO: vsize, rss, total_cpu_time */
}
}
}
/* empty stubs so conky links */
void prepare_update() {}
int get_entropy_avail(unsigned int *val) { return 1; }
int get_entropy_poolsize(unsigned int *val) { return 1; }