/* * * Conky, a system monitor, based on torsmo * * Any original torsmo code is licensed under the BSD license * * All code written since the fork of torsmo is licensed under the GPL * * Please see COPYING for details * * Copyright (c) 2007 Toni Spets * Copyright (c) 2005-2021 Brenden Matthews, Philip Kovacs, et. al. * (see AUTHORS) * All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "conky.h" #include "diskio.h" #include "logging.h" #include "net_stat.h" #include "openbsd.h" #include "top.h" #define MAXSHOWDEVS 16 #define LOG1024 10 #define pagetok(size) ((size) << pageshift) inline void proc_find_top(struct process **cpu, struct process **mem); static short cpu_setup = 0; static kvm_t *kd = 0; struct ifmibdata *data = nullptr; size_t len = 0; int init_kvm = 0; int init_sensors = 0; static int kvm_init() { if (init_kvm) { return 1; } kd = kvm_open(nullptr, NULL, NULL, KVM_NO_FILES, NULL); if (kd == nullptr) { NORM_ERR("error opening kvm"); } else { init_kvm = 1; } return 1; } /* note: swapmode taken from 'top' source */ /* swapmode is rewritten by Tobias Weingartner * to be based on the new swapctl(2) system call. */ static int swapmode(int *used, int *total) { struct swapent *swdev; int nswap, rnswap, i; nswap = swapctl(SWAP_NSWAP, 0, 0); if (nswap == 0) { return 0; } swdev = malloc(nswap * sizeof(*swdev)); if (swdev == nullptr) { return 0; } rnswap = swapctl(SWAP_STATS, swdev, nswap); if (rnswap == -1) { free(swdev); return 0; } /* if rnswap != nswap, then what? */ /* Total things up */ *total = *used = 0; for (i = 0; i < nswap; i++) { if (swdev[i].se_flags & SWF_ENABLE) { *used += (swdev[i].se_inuse / (1024 / DEV_BSIZE)); *total += (swdev[i].se_nblks / (1024 / DEV_BSIZE)); } } free(swdev); return 1; } int check_mount(struct text_object *obj) { /* stub */ (void)obj; return 0; } void update_uptime() { int mib[2] = {CTL_KERN, KERN_BOOTTIME}; struct timeval boottime; time_t now; size_t size = sizeof(boottime); if ((sysctl(mib, 2, &boottime, &size, nullptr, 0) != -1) && (boottime.tv_sec != 0)) { time(&now); info.uptime = now - boottime.tv_sec; } else { NORM_ERR("Could not get uptime"); info.uptime = 0; } } void update_meminfo() { static int mib[2] = {CTL_VM, VM_METER}; struct vmtotal vmtotal; size_t size; int pagesize, pageshift, swap_avail, swap_used; pagesize = getpagesize(); pageshift = 0; while (pagesize > 1) { pageshift++; pagesize >>= 1; } /* we only need the amount of log(2)1024 for our conversion */ pageshift -= LOG1024; /* get total -- systemwide main memory usage structure */ size = sizeof(vmtotal); if (sysctl(mib, 2, &vmtotal, &size, nullptr, 0) < 0) { warn("sysctl failed"); bzero(&vmtotal, sizeof(vmtotal)); } info.memmax = pagetok(vmtotal.t_rm) + pagetok(vmtotal.t_free); info.mem = info.memwithbuffers = pagetok(vmtotal.t_rm); info.memeasyfree = info.memfree = info.memmax - info.mem; info.legacymem = info.mem; if ((swapmode(&swap_used, &swap_avail)) >= 0) { info.swapmax = swap_avail; info.swap = swap_used; info.swapfree = swap_avail - swap_used; } else { info.swapmax = 0; info.swap = 0; info.swapfree = 0; } } void update_net_stats() { struct net_stat *ns; double delta; long long r, t, last_recv, last_trans; struct ifaddrs *ifap, *ifa; struct if_data *ifd; /* get delta */ delta = current_update_time - last_update_time; if (delta <= 0.0001) { return; } if (getifaddrs(&ifap) < 0) { return; } for (ifa = ifap; ifa; ifa = ifa->ifa_next) { ns = get_net_stat((const char *)ifa->ifa_name, nullptr, NULL); if (ifa->ifa_flags & IFF_UP) { struct ifaddrs *iftmp; ns->up = 1; last_recv = ns->recv; last_trans = ns->trans; if (ifa->ifa_addr->sa_family != AF_LINK) { continue; } for (iftmp = ifa->ifa_next; iftmp != nullptr && strcmp(ifa->ifa_name, iftmp->ifa_name) == 0; iftmp = iftmp->ifa_next) { if (iftmp->ifa_addr->sa_family == AF_INET) { memcpy(&(ns->addr), iftmp->ifa_addr, iftmp->ifa_addr->sa_len); } } ifd = (struct if_data *)ifa->ifa_data; r = ifd->ifi_ibytes; t = ifd->ifi_obytes; if (r < ns->last_read_recv) { ns->recv += ((long long)4294967295U - ns->last_read_recv) + r; } else { ns->recv += (r - ns->last_read_recv); } ns->last_read_recv = r; if (t < ns->last_read_trans) { ns->trans += (long long)4294967295U - ns->last_read_trans + t; } else { ns->trans += (t - ns->last_read_trans); } ns->last_read_trans = t; /* calculate speeds */ ns->recv_speed = (ns->recv - last_recv) / delta; ns->trans_speed = (ns->trans - last_trans) / delta; } else { ns->up = 0; } } freeifaddrs(ifap); } int update_total_processes() { int n_processes; kvm_init(); kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes); info.procs = n_processes; return 0; } void update_running_processes() { struct kinfo_proc2 *p; int n_processes; int i, cnt = 0; kvm_init(); int max_size = sizeof(struct kinfo_proc2); p = kvm_getproc2(kd, KERN_PROC_ALL, 0, max_size, &n_processes); for (i = 0; i < n_processes; i++) { if (p[i].p_stat == SRUN) { cnt++; } } info.run_procs = cnt; } /* new SMP code can be enabled by commenting the following line */ #define OLDCPU #ifdef OLDCPU struct cpu_load_struct { unsigned long load[5]; }; struct cpu_load_struct fresh = {{0, 0, 0, 0, 0}}; long cpu_used, oldtotal, oldused; #else #include int64_t *fresh = nullptr; /* XXX is 8 enough? - What's the constant for MAXCPU? */ /* allocate this with malloc would be better */ int64_t oldtotal[8], oldused[8]; #endif void get_cpu_count() { int cpu_count = 1; /* default to 1 cpu */ #ifndef OLDCPU int mib[2] = {CTL_HW, HW_NCPU}; size_t len = sizeof(cpu_count); if (sysctl(mib, 2, &cpu_count, &len, nullptr, 0) != 0) { NORM_ERR("error getting cpu count, defaulting to 1"); } #endif info.cpu_count = cpu_count; info.cpu_usage = malloc(info.cpu_count * sizeof(float)); if (info.cpu_usage == nullptr) { CRIT_ERR("malloc"); } #ifndef OLDCPU assert(fresh == nullptr); /* XXX Is this leaking memory? */ /* XXX Where shall I free this? */ if (nullptr == (fresh = calloc(cpu_count, sizeof(int64_t) * CPUSTATES))) { CRIT_ERR("calloc"); } #endif } void update_cpu_usage() { #ifdef OLDCPU int mib[2] = {CTL_KERN, KERN_CPTIME}; long used, total; long cp_time[CPUSTATES]; size_t len = sizeof(cp_time); #else size_t size; unsigned int i; #endif /* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */ if ((cpu_setup == 0) || (!info.cpu_usage)) { get_cpu_count(); cpu_setup = 1; } #ifdef OLDCPU if (sysctl(mib, 2, &cp_time, &len, nullptr, 0) < 0) { NORM_ERR("Cannot get kern.cp_time"); } fresh.load[0] = cp_time[CP_USER]; fresh.load[1] = cp_time[CP_NICE]; fresh.load[2] = cp_time[CP_SYS]; fresh.load[3] = cp_time[CP_IDLE]; fresh.load[4] = cp_time[CP_IDLE]; used = fresh.load[0] + fresh.load[1] + fresh.load[2]; total = fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3]; if ((total - oldtotal) != 0) { info.cpu_usage[0] = ((double)(used - oldused)) / (double)(total - oldtotal); } else { info.cpu_usage[0] = 0; } oldused = used; oldtotal = total; #else if (info.cpu_count > 1) { size = CPUSTATES * sizeof(int64_t); for (i = 0; i < info.cpu_count; i++) { int cp_time_mib[] = {CTL_KERN, KERN_CPTIME2, i}; if (sysctl(cp_time_mib, 3, &(fresh[i * CPUSTATES]), &size, nullptr, 0) < 0) { NORM_ERR("sysctl kern.cp_time2 failed"); } } } else { int cp_time_mib[] = {CTL_KERN, KERN_CPTIME}; long cp_time_tmp[CPUSTATES]; size = sizeof(cp_time_tmp); if (sysctl(cp_time_mib, 2, cp_time_tmp, &size, nullptr, 0) < 0) { NORM_ERR("sysctl kern.cp_time failed"); } for (i = 0; i < CPUSTATES; i++) { fresh[i] = (int64_t)cp_time_tmp[i]; } } /* XXX Do sg with this int64_t => long => double ? float hell. */ for (i = 0; i < info.cpu_count; i++) { int64_t used, total; int at = i * CPUSTATES; used = fresh[at + CP_USER] + fresh[at + CP_NICE] + fresh[at + CP_SYS]; total = used + fresh[at + CP_IDLE]; if ((total - oldtotal[i]) != 0) { info.cpu_usage[i] = ((double)(used - oldused[i])) / (double)(total - oldtotal[i]); } else { info.cpu_usage[i] = 0; } oldused[i] = used; oldtotal[i] = total; } #endif } void free_cpu(struct text_object *) { /* no-op */ } void update_load_average() { double v[3]; getloadavg(v, 3); info.loadavg[0] = (float)v[0]; info.loadavg[1] = (float)v[1]; info.loadavg[2] = (float)v[2]; } #define OBSD_MAX_SENSORS 256 static struct obsd_sensors_struct { int device; float temp[MAXSENSORDEVICES][OBSD_MAX_SENSORS]; unsigned int fan[MAXSENSORDEVICES][OBSD_MAX_SENSORS]; float volt[MAXSENSORDEVICES][OBSD_MAX_SENSORS]; } obsd_sensors; static conky::simple_config_setting sensor_device("sensor_device", 0, false); /* read sensors from sysctl */ void update_obsd_sensors() { int sensor_cnt, dev, numt, mib[5] = {CTL_HW, HW_SENSORS, 0, 0, 0}; struct sensor sensor; struct sensordev sensordev; size_t slen, sdlen; enum sensor_type type; slen = sizeof(sensor); sdlen = sizeof(sensordev); sensor_cnt = 0; dev = obsd_sensors.device; // FIXME: read more than one device /* for (dev = 0; dev < MAXSENSORDEVICES; dev++) { */ mib[2] = dev; if (sysctl(mib, 3, &sensordev, &sdlen, nullptr, 0) == -1) { if (errno != ENOENT) { warn("sysctl"); } return; // continue; } for (type = 0; type < SENSOR_MAX_TYPES; type++) { mib[3] = type; for (numt = 0; numt < sensordev.maxnumt[type]; numt++) { mib[4] = numt; if (sysctl(mib, 5, &sensor, &slen, nullptr, 0) == -1) { if (errno != ENOENT) { warn("sysctl"); } continue; } if (sensor.flags & SENSOR_FINVALID) { continue; } switch (type) { case SENSOR_TEMP: obsd_sensors.temp[dev][sensor.numt] = (sensor.value - 273150000) / 1000000.0; break; case SENSOR_FANRPM: obsd_sensors.fan[dev][sensor.numt] = sensor.value; break; case SENSOR_VOLTS_DC: obsd_sensors.volt[dev][sensor.numt] = sensor.value / 1000000.0; break; default: break; } sensor_cnt++; } } /* } */ init_sensors = 1; } void parse_obsd_sensor(struct text_object *obj, const char *arg) { if (!isdigit((unsigned char)arg[0]) || atoi(&arg[0]) < 0 || atoi(&arg[0]) > OBSD_MAX_SENSORS - 1) { obj->data.l = 0; NORM_ERR("Invalid sensor number!"); } else obj->data.l = atoi(&arg[0]); } void print_obsd_sensors_temp(struct text_object *obj, char *p, int p_max_size) { obsd_sensors.device = sensor_device.get(*state); update_obsd_sensors(); temp_print(p, p_max_size, obsd_sensors.temp[obsd_sensors.device][obj->data.l], TEMP_CELSIUS, 1); } void print_obsd_sensors_fan(struct text_object *obj, char *p, int p_max_size) { obsd_sensors.device = sensor_device.get(*state); update_obsd_sensors(); snprintf(p, p_max_size, "%d", obsd_sensors.fan[obsd_sensors.device][obj->data.l]); } void print_obsd_sensors_volt(struct text_object *obj, char *p, int p_max_size) { obsd_sensors.device = sensor_device.get(*state); update_obsd_sensors(); snprintf(p, p_max_size, "%.2f", obsd_sensors.volt[obsd_sensors.device][obj->data.l]); } /* chipset vendor */ void get_obsd_vendor(struct text_object *obj, char *buf, size_t client_buffer_size) { int mib[2]; char vendor[64]; size_t size = sizeof(vendor); (void)obj; mib[0] = CTL_HW; mib[1] = HW_VENDOR; if (sysctl(mib, 2, vendor, &size, nullptr, 0) == -1) { NORM_ERR("error reading vendor"); snprintf(buf, client_buffer_size, "%s", "unknown"); } else { snprintf(buf, client_buffer_size, "%s", vendor); } } /* chipset name */ void get_obsd_product(struct text_object *obj, char *buf, size_t client_buffer_size) { int mib[2]; char product[64]; size_t size = sizeof(product); (void)obj; mib[0] = CTL_HW; mib[1] = HW_PRODUCT; if (sysctl(mib, 2, product, &size, nullptr, 0) == -1) { NORM_ERR("error reading product"); snprintf(buf, client_buffer_size, "%s", "unknown"); } else { snprintf(buf, client_buffer_size, "%s", product); } } /* void */ char get_freq(char *p_client_buffer, size_t client_buffer_size, const char *p_format, int divisor, unsigned int cpu) { int freq = cpu; int mib[2] = {CTL_HW, HW_CPUSPEED}; if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) { return 0; } size_t size = sizeof(freq); if (sysctl(mib, 2, &freq, &size, nullptr, 0) == 0) { snprintf(p_client_buffer, client_buffer_size, p_format, (float)freq / divisor); } else { snprintf(p_client_buffer, client_buffer_size, p_format, 0.0f); } return 1; } #if 0 /* deprecated, will rewrite this soon in update_net_stats() -hifi */ void update_wifi_stats() { struct net_stat *ns; struct ifaddrs *ifap, *ifa; struct ifmediareq ifmr; struct ieee80211_nodereq nr; struct ieee80211_bssid bssid; int s, ibssid; /* Get iface table */ if (getifaddrs(&ifap) < 0) { return; } for (ifa = ifap; ifa; ifa = ifa->ifa_next) { ns = get_net_stat((const char *) ifa->ifa_name); s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); /* Get media type */ bzero(&ifmr, sizeof(ifmr)); strlcpy(ifmr.ifm_name, ifa->ifa_name, IFNAMSIZ); if (ioctl(s, SIOCGIFMEDIA, (caddr_t) &ifmr) < 0) { close(s); return; } /* We can monitor only wireless interfaces * which are not in hostap mode */ if ((ifmr.ifm_active & IFM_IEEE80211) && !(ifmr.ifm_active & IFM_IEEE80211_HOSTAP)) { /* Get wi status */ memset(&bssid, 0, sizeof(bssid)); strlcpy(bssid.i_name, ifa->ifa_name, sizeof(bssid.i_name)); ibssid = ioctl(s, SIOCG80211BSSID, &bssid); bzero(&nr, sizeof(nr)); bcopy(bssid.i_bssid, &nr.nr_macaddr, sizeof(nr.nr_macaddr)); strlcpy(nr.nr_ifname, ifa->ifa_name, sizeof(nr.nr_ifname)); if (ioctl(s, SIOCG80211NODE, &nr) == 0 && nr.nr_rssi) { ns->linkstatus = nr.nr_rssi; } } cleanup: close(s); } } #endif void clear_diskio_stats() {} struct diskio_stat *prepare_diskio_stat(const char *s) {} void update_diskio() { return; /* XXX: implement? hifi: not sure how */ } /* While topless is obviously better, top is also not bad. */ void get_top_info(void) { struct kinfo_proc2 *p; struct process *proc; int n_processes; int i; kvm_init(); p = kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2), &n_processes); for (i = 0; i < n_processes; i++) { if (!((p[i].p_flag & P_SYSTEM)) && p[i].p_comm != nullptr) { proc = find_process(p[i].p_pid); if (!proc) proc = new_process(p[i].p_pid); proc->time_stamp = g_time; proc->name = strndup(p[i].p_comm, text_buffer_size); proc->amount = 100.0 * p[i].p_pctcpu / FSCALE; /* TODO: vsize, rss, total_cpu_time */ } } } /* empty stubs so conky links */ void prepare_update() {} int get_entropy_avail(unsigned int *val) { return 1; } int get_entropy_poolsize(unsigned int *val) { return 1; }