/* -*- mode: c++; c-basic-offset: 4; tab-width: 4; indent-tabs-mode: t -*- * vim: ts=4 sw=4 noet ai cindent syntax=cpp * * Conky, a system monitor, based on torsmo * * Please see COPYING for details * * Copyright (c) 2004, Hannu Saransaari and Lauri Hakkarainen * Copyright (c) 2007 Toni Spets * Copyright (c) 2005-2010 Brenden Matthews, Philip Kovacs, et. al. * (see AUTHORS) * All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include "conky.h" #include "logging.h" #include "common.h" #include "linux.h" #include "net_stat.h" #include "diskio.h" #include "temphelper.h" #include #include #include #include #include #include #include #ifndef HAVE_CLOCK_GETTIME #include #endif #include #include // #include #include #include "top.h" #include #include #include #include #include #include #ifdef _NET_IF_H #define _LINUX_IF_H #endif #include #include #include /* The following ifdefs were adapted from gkrellm */ #include #if !defined(MD_MAJOR) #define MD_MAJOR 9 #endif #if !defined(LVM_BLK_MAJOR) #define LVM_BLK_MAJOR 58 #endif #if !defined(NBD_MAJOR) #define NBD_MAJOR 43 #endif #ifdef BUILD_WLAN #include #endif struct sysfs { int fd; int arg; char devtype[256]; char type[64]; float factor, offset; }; #define SHORTSTAT_TEMPL "%*s %llu %llu %llu" #define LONGSTAT_TEMPL "%*s %llu %llu %llu " /* This flag tells the linux routines to use the /proc system where possible, * even if other api's are available, e.g. sysinfo() or getloadavg(). * the reason for this is to allow for /proc-based distributed monitoring. * using a flag in this manner creates less confusing code. */ static int prefer_proc = 0; void prepare_update(void) { } int update_uptime(void) { #ifdef HAVE_SYSINFO if (!prefer_proc) { struct sysinfo s_info; sysinfo(&s_info); info.uptime = (double) s_info.uptime; } else #endif { static int rep = 0; FILE *fp; if (!(fp = open_file("/proc/uptime", &rep))) { info.uptime = 0.0; return 0; } if (fscanf(fp, "%lf", &info.uptime) <= 0) info.uptime = 0; fclose(fp); } return 0; } int check_mount(struct text_object *obj) { int ret = 0; FILE *mtab; if (!obj->data.s) return 0; if ((mtab = fopen("/etc/mtab", "r"))) { char buf1[256], buf2[128]; while (fgets(buf1, 256, mtab)) { sscanf(buf1, "%*s %128s", buf2); if (!strcmp(obj->data.s, buf2)) { ret = 1; break; } } fclose(mtab); } else { NORM_ERR("Could not open mtab"); } return ret; } /* these things are also in sysinfo except Buffers: * (that's why I'm reading them from proc) */ int update_meminfo(void) { FILE *meminfo_fp; static int rep = 0; /* unsigned int a; */ char buf[256]; info.mem = info.memwithbuffers = info.memmax = info.swap = info.swapfree = info.swapmax = info.bufmem = info.buffers = info.cached = info.memfree = info.memeasyfree = 0; if (!(meminfo_fp = open_file("/proc/meminfo", &rep))) { return 0; } while (!feof(meminfo_fp)) { if (fgets(buf, 255, meminfo_fp) == NULL) { break; } if (strncmp(buf, "MemTotal:", 9) == 0) { sscanf(buf, "%*s %llu", &info.memmax); } else if (strncmp(buf, "MemFree:", 8) == 0) { sscanf(buf, "%*s %llu", &info.memfree); } else if (strncmp(buf, "SwapTotal:", 10) == 0) { sscanf(buf, "%*s %llu", &info.swapmax); } else if (strncmp(buf, "SwapFree:", 9) == 0) { sscanf(buf, "%*s %llu", &info.swapfree); } else if (strncmp(buf, "Buffers:", 8) == 0) { sscanf(buf, "%*s %llu", &info.buffers); } else if (strncmp(buf, "Cached:", 7) == 0) { sscanf(buf, "%*s %llu", &info.cached); } } info.mem = info.memwithbuffers = info.memmax - info.memfree; info.memeasyfree = info.memfree; info.swap = info.swapmax - info.swapfree; info.bufmem = info.cached + info.buffers; fclose(meminfo_fp); return 0; } void print_laptop_mode(struct text_object *obj, char *p, int p_max_size) { FILE *fp; int val = -1; (void)obj; if ((fp = fopen("/proc/sys/vm/laptop_mode", "r")) != NULL) { if (fscanf(fp, "%d\n", &val) <= 0) val = 0; fclose(fp); } snprintf(p, p_max_size, "%d", val); } /* my system says: * # cat /sys/block/sda/queue/scheduler * noop [anticipatory] cfq */ void print_ioscheduler(struct text_object *obj, char *p, int p_max_size) { FILE *fp; char buf[128]; if (!obj->data.s) goto out_fail; snprintf(buf, 127, "/sys/block/%s/queue/scheduler", obj->data.s); if ((fp = fopen(buf, "r")) == NULL) goto out_fail; while (fscanf(fp, "%127s", buf) == 1) { if (buf[0] == '[') { buf[strlen(buf) - 1] = '\0'; snprintf(p, p_max_size, "%s", buf + 1); fclose(fp); return; } } fclose(fp); out_fail: snprintf(p, p_max_size, "n/a"); return; } static struct { char *iface; char *ip; int count; } gw_info; #define SAVE_SET_STRING(x, y) \ if (x && strcmp((char *)x, (char *)y)) { \ free(x); \ x = strndup("multiple", text_buffer_size); \ } else if (!x) { \ x = strndup(y, text_buffer_size); \ } void update_gateway_info_failure(const char *reason) { if(reason != NULL) { perror(reason); } //2 pointers to 1 location causes a crash when we try to free them both gw_info.iface = strndup("failed", text_buffer_size); gw_info.ip = strndup("failed", text_buffer_size); } /* Iface Destination Gateway Flags RefCnt Use Metric Mask MTU Window IRTT */ #define RT_ENTRY_FORMAT "%63s %lx %lx %x %*d %*d %*d %lx %*d %*d %*d\n" int update_gateway_info(void) { FILE *fp; struct in_addr ina; char iface[64]; unsigned long dest, gate, mask; unsigned int flags; free_and_zero(gw_info.iface); free_and_zero(gw_info.ip); gw_info.count = 0; if ((fp = fopen("/proc/net/route", "r")) == NULL) { update_gateway_info_failure("fopen()"); return 0; } /* skip over the table header line, which is always present */ if (fscanf(fp, "%*[^\n]\n") < 0) { fclose(fp); return 0; } while (!feof(fp)) { if(fscanf(fp, RT_ENTRY_FORMAT, iface, &dest, &gate, &flags, &mask) != 5) { update_gateway_info_failure("fscanf()"); break; } if (!(dest || mask) && ((flags & RTF_GATEWAY) || !gate) ) { gw_info.count++; SAVE_SET_STRING(gw_info.iface, iface) ina.s_addr = gate; SAVE_SET_STRING(gw_info.ip, inet_ntoa(ina)) } } fclose(fp); return 0; } void free_gateway_info(struct text_object *obj) { (void)obj; free_and_zero(gw_info.iface); free_and_zero(gw_info.ip); memset(&gw_info, 0, sizeof(gw_info)); } int gateway_exists(struct text_object *obj) { (void)obj; return !!gw_info.count; } void print_gateway_iface(struct text_object *obj, char *p, int p_max_size) { (void)obj; snprintf(p, p_max_size, "%s", gw_info.iface); } void print_gateway_ip(struct text_object *obj, char *p, int p_max_size) { (void)obj; snprintf(p, p_max_size, "%s", gw_info.ip); } int update_net_stats(void) { FILE *net_dev_fp; static int rep = 0; static char first = 1; // FIXME: arbitrary size chosen to keep code simple. int i, i2; unsigned int curtmp1, curtmp2; unsigned int k; struct ifconf conf; char buf[256]; double delta; #ifdef BUILD_WLAN // wireless info variables int skfd, has_bitrate = 0; struct wireless_info *winfo; struct iwreq wrq; #endif /* get delta */ delta = current_update_time - last_update_time; if (delta <= 0.0001) { return 0; } /* open file and ignore first two lines */ if (!(net_dev_fp = open_file("/proc/net/dev", &rep))) { clear_net_stats(); return 0; } if (!fgets(buf, 255, net_dev_fp) || /* garbage */ !fgets(buf, 255, net_dev_fp)) { /* garbage (field names) */ fclose(net_dev_fp); return 0; } /* read each interface */ for (i2 = 0; i2 < MAX_NET_INTERFACES; i2++) { struct net_stat *ns; char *s, *p; char temp_addr[18]; long long r, t, last_recv, last_trans; if (fgets(buf, 255, net_dev_fp) == NULL) { break; } p = buf; while (isspace((int) *p)) { p++; } s = p; while (*p && *p != ':') { p++; } if (*p == '\0') { continue; } *p = '\0'; p++; ns = get_net_stat(s, NULL, NULL); ns->up = 1; memset(&(ns->addr.sa_data), 0, 14); memset(ns->addrs, 0, 17 * MAX_NET_INTERFACES + 1); /* Up to 17 chars per ip, max MAX_NET_INTERFACES interfaces. Nasty memory usage... */ last_recv = ns->recv; last_trans = ns->trans; /* bytes packets errs drop fifo frame compressed multicast|bytes ... */ sscanf(p, "%lld %*d %*d %*d %*d %*d %*d %*d %lld", &r, &t); /* if recv or trans is less than last time, an overflow happened */ if (r < ns->last_read_recv) { last_recv = 0; } else { ns->recv += (r - ns->last_read_recv); } ns->last_read_recv = r; if (t < ns->last_read_trans) { last_trans = 0; } else { ns->trans += (t - ns->last_read_trans); } ns->last_read_trans = t; /*** ip addr patch ***/ i = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP); conf.ifc_buf = (char*)malloc(sizeof(struct ifreq) * MAX_NET_INTERFACES); conf.ifc_len = sizeof(struct ifreq) * MAX_NET_INTERFACES; memset(conf.ifc_buf, 0, conf.ifc_len); ioctl((long) i, SIOCGIFCONF, &conf); for (k = 0; k < conf.ifc_len / sizeof(struct ifreq); k++) { struct net_stat *ns2; if (!(((struct ifreq *) conf.ifc_buf) + k)) break; ns2 = get_net_stat( ((struct ifreq *) conf.ifc_buf)[k].ifr_ifrn.ifrn_name, NULL, NULL); ns2->addr = ((struct ifreq *) conf.ifc_buf)[k].ifr_ifru.ifru_addr; sprintf(temp_addr, "%u.%u.%u.%u, ", ns2->addr.sa_data[2] & 255, ns2->addr.sa_data[3] & 255, ns2->addr.sa_data[4] & 255, ns2->addr.sa_data[5] & 255); if(NULL == strstr(ns2->addrs, temp_addr)) strncpy(ns2->addrs + strlen(ns2->addrs), temp_addr, 17); } close((long) i); free(conf.ifc_buf); /*** end ip addr patch ***/ if (!first) { /* calculate speeds */ ns->net_rec[0] = (ns->recv - last_recv) / delta; ns->net_trans[0] = (ns->trans - last_trans) / delta; } curtmp1 = 0; curtmp2 = 0; // get an average #ifdef HAVE_OPENMP #pragma omp parallel for reduction(+:curtmp1, curtmp2) schedule(dynamic,10) #endif /* HAVE_OPENMP */ for (i = 0; i < info.net_avg_samples; i++) { curtmp1 = curtmp1 + ns->net_rec[i]; curtmp2 = curtmp2 + ns->net_trans[i]; } ns->recv_speed = curtmp1 / (double) info.net_avg_samples; ns->trans_speed = curtmp2 / (double) info.net_avg_samples; if (info.net_avg_samples > 1) { #ifdef HAVE_OPENMP #pragma omp parallel for schedule(dynamic,10) #endif /* HAVE_OPENMP */ for (i = info.net_avg_samples; i > 1; i--) { ns->net_rec[i - 1] = ns->net_rec[i - 2]; ns->net_trans[i - 1] = ns->net_trans[i - 2]; } } #ifdef BUILD_WLAN /* update wireless info */ winfo = (struct wireless_info *) malloc(sizeof(struct wireless_info)); memset(winfo, 0, sizeof(struct wireless_info)); skfd = iw_sockets_open(); if (iw_get_basic_config(skfd, s, &(winfo->b)) > -1) { // set present winfo variables if (iw_get_stats(skfd, s, &(winfo->stats), &winfo->range, winfo->has_range) >= 0) { winfo->has_stats = 1; } if (iw_get_range_info(skfd, s, &(winfo->range)) >= 0) { winfo->has_range = 1; } if (iw_get_ext(skfd, s, SIOCGIWAP, &wrq) >= 0) { winfo->has_ap_addr = 1; memcpy(&(winfo->ap_addr), &(wrq.u.ap_addr), sizeof(sockaddr)); } // get bitrate if (iw_get_ext(skfd, s, SIOCGIWRATE, &wrq) >= 0) { memcpy(&(winfo->bitrate), &(wrq.u.bitrate), sizeof(iwparam)); iw_print_bitrate(ns->bitrate, 16, winfo->bitrate.value); has_bitrate = 1; } // get link quality if (winfo->has_range && winfo->has_stats && ((winfo->stats.qual.level != 0) || (winfo->stats.qual.updated & IW_QUAL_DBM))) { if (!(winfo->stats.qual.updated & IW_QUAL_QUAL_INVALID)) { ns->link_qual = winfo->stats.qual.qual; ns->link_qual_max = winfo->range.max_qual.qual; } } // get ap mac if (winfo->has_ap_addr) { iw_sawap_ntop(&winfo->ap_addr, ns->ap); } // get essid if (winfo->b.has_essid) { if (winfo->b.essid_on) { snprintf(ns->essid, 32, "%s", winfo->b.essid); } else { snprintf(ns->essid, 32, "off/any"); } } snprintf(ns->mode, 16, "%s", iw_operation_mode[winfo->b.mode]); } iw_sockets_close(skfd); free(winfo); #endif } first = 0; fclose(net_dev_fp); return 0; } int result; int update_total_processes(void) { DIR *dir; struct dirent *entry; int ignore1; char ignore2; info.procs = 0; if (!(dir = opendir("/proc"))) { return 0; } while ((entry = readdir(dir))) { if (!entry) { /* Problem reading list of processes */ closedir(dir); info.procs = 0; return 0; } if (sscanf(entry->d_name, "%d%c", &ignore1, &ignore2) == 1) { info.procs++; } } closedir(dir); return 0; } int update_threads(void) { #ifdef HAVE_SYSINFO if (!prefer_proc) { struct sysinfo s_info; sysinfo(&s_info); info.threads = s_info.procs; } else #endif { static int rep = 0; FILE *fp; if (!(fp = open_file("/proc/loadavg", &rep))) { info.threads = 0; return 0; } if (fscanf(fp, "%*f %*f %*f %*d/%hu", &info.threads) <= 0) info.threads = 0; fclose(fp); } return 0; } #define CPU_SAMPLE_COUNT 15 struct cpu_info { unsigned long long cpu_user; unsigned long long cpu_system; unsigned long long cpu_nice; unsigned long long cpu_idle; unsigned long long cpu_iowait; unsigned long long cpu_irq; unsigned long long cpu_softirq; unsigned long long cpu_steal; unsigned long long cpu_total; unsigned long long cpu_active_total; unsigned long long cpu_last_total; unsigned long long cpu_last_active_total; double cpu_val[CPU_SAMPLE_COUNT]; }; static short cpu_setup = 0; /* Determine if this kernel gives us "extended" statistics information in * /proc/stat. * Kernels around 2.5 and earlier only reported user, system, nice, and * idle values in proc stat. * Kernels around 2.6 and greater report these PLUS iowait, irq, softirq, * and steal */ void determine_longstat(char *buf) { unsigned long long iowait = 0; KFLAG_SETOFF(KFLAG_IS_LONGSTAT); /* scanf will either return -1 or 1 because there is only 1 assignment */ if (sscanf(buf, "%*s %*d %*d %*d %*d %llu", &iowait) > 0) { KFLAG_SETON(KFLAG_IS_LONGSTAT); } } void get_cpu_count(void) { FILE *stat_fp; static int rep = 0; char buf[256]; if (info.cpu_usage) { return; } if (!(stat_fp = open_file("/proc/stat", &rep))) { return; } info.cpu_count = 0; while (!feof(stat_fp)) { if (fgets(buf, 255, stat_fp) == NULL) { break; } if (strncmp(buf, "cpu", 3) == 0 && isdigit(buf[3])) { if (info.cpu_count == 0) { determine_longstat(buf); } info.cpu_count++; } } info.cpu_usage = (float*)malloc((info.cpu_count + 1) * sizeof(float)); fclose(stat_fp); } #define TMPL_LONGSTAT "%*s %llu %llu %llu %llu %llu %llu %llu %llu" #define TMPL_SHORTSTAT "%*s %llu %llu %llu %llu" int update_stat(void) { FILE *stat_fp; static int rep = 0; static struct cpu_info *cpu = NULL; char buf[256]; int i; unsigned int idx; double curtmp; const char *stat_template = NULL; unsigned int malloc_cpu_size = 0; extern void* global_cpu; static pthread_mutex_t last_stat_update_mutex = PTHREAD_MUTEX_INITIALIZER; static double last_stat_update = 0.0; /* since we use wrappers for this function, the update machinery * can't eliminate double invocations of this function. Check for * them here, otherwise cpu_usage counters are freaking out. */ pthread_mutex_lock(&last_stat_update_mutex); if (last_stat_update == current_update_time) { pthread_mutex_unlock(&last_stat_update_mutex); return 0; } last_stat_update = current_update_time; pthread_mutex_unlock(&last_stat_update_mutex); /* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */ if (!cpu_setup || !info.cpu_usage) { get_cpu_count(); cpu_setup = 1; } if (!stat_template) { stat_template = KFLAG_ISSET(KFLAG_IS_LONGSTAT) ? TMPL_LONGSTAT : TMPL_SHORTSTAT; } if (!global_cpu) { malloc_cpu_size = (info.cpu_count + 1) * sizeof(struct cpu_info); cpu = (struct cpu_info *)malloc(malloc_cpu_size); memset(cpu, 0, malloc_cpu_size); global_cpu = cpu; } if (!(stat_fp = open_file("/proc/stat", &rep))) { info.run_threads = 0; if (info.cpu_usage) { memset(info.cpu_usage, 0, info.cpu_count * sizeof(float)); } return 0; } idx = 0; while (!feof(stat_fp)) { if (fgets(buf, 255, stat_fp) == NULL) { break; } if (strncmp(buf, "procs_running ", 14) == 0) { sscanf(buf, "%*s %hu", &info.run_threads); } else if (strncmp(buf, "cpu", 3) == 0) { double delta; if (isdigit(buf[3])) { idx = atoi(&buf[3]) + 1; } else { idx = 0; } sscanf(buf, stat_template, &(cpu[idx].cpu_user), &(cpu[idx].cpu_nice), &(cpu[idx].cpu_system), &(cpu[idx].cpu_idle), &(cpu[idx].cpu_iowait), &(cpu[idx].cpu_irq), &(cpu[idx].cpu_softirq), &(cpu[idx].cpu_steal)); cpu[idx].cpu_total = cpu[idx].cpu_user + cpu[idx].cpu_nice + cpu[idx].cpu_system + cpu[idx].cpu_idle + cpu[idx].cpu_iowait + cpu[idx].cpu_irq + cpu[idx].cpu_softirq + cpu[idx].cpu_steal; cpu[idx].cpu_active_total = cpu[idx].cpu_total - (cpu[idx].cpu_idle + cpu[idx].cpu_iowait); delta = current_update_time - last_update_time; if (delta <= 0.001) { break; } cpu[idx].cpu_val[0] = (cpu[idx].cpu_active_total - cpu[idx].cpu_last_active_total) / (float) (cpu[idx].cpu_total - cpu[idx].cpu_last_total); curtmp = 0; #ifdef HAVE_OPENMP #pragma omp parallel for reduction(+:curtmp) schedule(dynamic,10) #endif /* HAVE_OPENMP */ for (i = 0; i < info.cpu_avg_samples; i++) { curtmp = curtmp + cpu[idx].cpu_val[i]; } /* TESTING -- I've removed this, because I don't think it is right. * You shouldn't divide by the cpu count here ... * removing for testing */ /* if (idx == 0) { info.cpu_usage[idx] = curtmp / info.cpu_avg_samples / info.cpu_count; } else { info.cpu_usage[idx] = curtmp / info.cpu_avg_samples; } */ /* TESTING -- this line replaces the prev. "suspect" if/else */ info.cpu_usage[idx] = curtmp / info.cpu_avg_samples; cpu[idx].cpu_last_total = cpu[idx].cpu_total; cpu[idx].cpu_last_active_total = cpu[idx].cpu_active_total; #ifdef HAVE_OPENMP #pragma omp parallel for schedule(dynamic,10) #endif /* HAVE_OPENMP */ for (i = info.cpu_avg_samples - 1; i > 0; i--) { cpu[idx].cpu_val[i] = cpu[idx].cpu_val[i - 1]; } } } fclose(stat_fp); return 0; } int update_running_processes(void) { update_stat(); return 0; } int update_cpu_usage(void) { update_stat(); return 0; } int update_load_average(void) { #ifdef HAVE_GETLOADAVG if (!prefer_proc) { double v[3]; getloadavg(v, 3); info.loadavg[0] = (float) v[0]; info.loadavg[1] = (float) v[1]; info.loadavg[2] = (float) v[2]; } else #endif { static int rep = 0; FILE *fp; if (!(fp = open_file("/proc/loadavg", &rep))) { info.loadavg[0] = info.loadavg[1] = info.loadavg[2] = 0.0; return 0; } if (fscanf(fp, "%f %f %f", &info.loadavg[0], &info.loadavg[1], &info.loadavg[2]) < 0) info.loadavg[0] = info.loadavg[1] = info.loadavg[2] = 0.0; fclose(fp); } return 0; } /***********************************************************/ /***********************************************************/ /***********************************************************/ static int no_dots(const struct dirent *d) { if (d->d_name[0] == '.') { return 0; } return 1; } static int get_first_file_in_a_directory(const char *dir, char *s, int *rep) { struct dirent **namelist; int i, n; n = scandir(dir, &namelist, no_dots, alphasort); if (n < 0) { if (!rep || !*rep) { NORM_ERR("scandir for %s: %s", dir, strerror(errno)); if (rep) { *rep = 1; } } return 0; } else { if (n == 0) { return 0; } strncpy(s, namelist[0]->d_name, 255); s[255] = '\0'; #ifdef HAVE_OPENMP #pragma omp parallel for schedule(dynamic,10) #endif /* HAVE_OPENMP */ for (i = 0; i < n; i++) { free(namelist[i]); } free(namelist); return 1; } } static int open_sysfs_sensor(const char *dir, const char *dev, const char *type, int n, int *divisor, char *devtype) { char path[256]; char buf[256]; int fd; int divfd; memset(buf, 0, sizeof(buf)); /* if device is NULL or *, get first */ if (dev == NULL || strcmp(dev, "*") == 0) { static int rep = 0; if (!get_first_file_in_a_directory(dir, buf, &rep)) { return -1; } dev = buf; } if (strcmp(dir, "/sys/class/hwmon/") == 0) { if (*buf) { /* buf holds result from get_first_file_in_a_directory() above, * e.g. "hwmon0" -- append "/device" */ strcat(buf, "/device"); } else { /* dev holds device number N as a string, * e.g. "0", -- convert to "hwmon0/device" */ sprintf(buf, "hwmon%s/device", dev); dev = buf; } } /* change vol to in, tempf to temp */ if (strcmp(type, "vol") == 0) { type = "in"; } else if (strcmp(type, "tempf") == 0) { type = "temp"; } /* construct path */ snprintf(path, 255, "%s%s/%s%d_input", dir, dev, type, n); /* first, attempt to open file in /device */ fd = open(path, O_RDONLY); if (fd < 0) { /* if it fails, strip the /device from dev and attempt again */ buf[strlen(buf) - 7] = 0; snprintf(path, 255, "%s%s/%s%d_input", dir, dev, type, n); fd = open(path, O_RDONLY); if (fd < 0) { CRIT_ERR(NULL, NULL, "can't open '%s': %s\nplease check your device or remove this " "var from "PACKAGE_NAME, path, strerror(errno)); } } strncpy(devtype, path, 255); if (strcmp(type, "in") == 0 || strcmp(type, "temp") == 0 || strcmp(type, "tempf") == 0) { *divisor = 1; } else { *divisor = 0; } /* fan does not use *_div as a read divisor */ if (strcmp("fan", type) == 0) { return fd; } /* test if *_div file exist, open it and use it as divisor */ if (strcmp(type, "tempf") == 0) { snprintf(path, 255, "%s%s/%s%d_div", dir, "one", "two", n); } else { snprintf(path, 255, "%s%s/%s%d_div", dir, dev, type, n); } divfd = open(path, O_RDONLY); if (divfd > 0) { /* read integer */ char divbuf[64]; int divn; divn = read(divfd, divbuf, 63); /* should read until n == 0 but I doubt that kernel will give these * in multiple pieces. :) */ if (divn < 0) { NORM_ERR("open_sysfs_sensor(): can't read from sysfs"); } else { divbuf[divn] = '\0'; *divisor = atoi(divbuf); } close(divfd); } return fd; } static double get_sysfs_info(int *fd, int divisor, char *devtype, char *type) { int val = 0; if (*fd <= 0) { return 0; } lseek(*fd, 0, SEEK_SET); /* read integer */ { char buf[64]; int n; n = read(*fd, buf, 63); /* should read until n == 0 but I doubt that kernel will give these * in multiple pieces. :) */ if (n < 0) { NORM_ERR("get_sysfs_info(): read from %s failed\n", devtype); } else { buf[n] = '\0'; val = atoi(buf); } } close(*fd); /* open file */ *fd = open(devtype, O_RDONLY); if (*fd < 0) { NORM_ERR("can't open '%s': %s", devtype, strerror(errno)); } /* My dirty hack for computing CPU value * Filedil, from forums.gentoo.org */ /* if (strstr(devtype, "temp1_input") != NULL) { return -15.096 + 1.4893 * (val / 1000.0); } */ /* divide voltage and temperature by 1000 */ /* or if any other divisor is given, use that */ if (strcmp(type, "tempf") == 0) { if (divisor > 1) { return ((val / divisor + 40) * 9.0 / 5) - 40; } else if (divisor) { return ((val / 1000.0 + 40) * 9.0 / 5) - 40; } else { return ((val + 40) * 9.0 / 5) - 40; } } else { if (divisor > 1) { return val / divisor; } else if (divisor) { return val / 1000.0; } else { return val; } } } #define HWMON_RESET() {\ buf1[0] = 0; \ factor = 1.0; \ offset = 0.0; } static void parse_sysfs_sensor(struct text_object *obj, const char *arg, const char *path, const char *type) { char buf1[64], buf2[64]; float factor, offset; int n, found = 0; struct sysfs *sf; if (sscanf(arg, "%63s %d %f %f", buf2, &n, &factor, &offset) == 4) found = 1; else HWMON_RESET(); if (!found && sscanf(arg, "%63s %63s %d %f %f", buf1, buf2, &n, &factor, &offset) == 5) found = 1; else if (!found) HWMON_RESET(); if (!found && sscanf(arg, "%63s %63s %d", buf1, buf2, &n) == 3) found = 1; else if (!found) HWMON_RESET(); if (!found && sscanf(arg, "%63s %d", buf2, &n) == 2) found = 1; else if (!found) HWMON_RESET(); if (!found) { obj_be_plain_text(obj, "fail"); return; } DBGP("parsed %s args: '%s' '%s' %d %f %f\n", type, buf1, buf2, n, factor, offset); sf = (struct sysfs*)malloc(sizeof(struct sysfs)); memset(sf, 0, sizeof(struct sysfs)); sf->fd = open_sysfs_sensor(path, (*buf1) ? buf1 : 0, buf2, n, &sf->arg, sf->devtype); strncpy(sf->type, buf2, 63); sf->factor = factor; sf->offset = offset; obj->data.opaque = sf; } #define PARSER_GENERATOR(name, path) \ void parse_##name##_sensor(struct text_object *obj, const char *arg) \ { \ parse_sysfs_sensor(obj, arg, path, #name); \ } PARSER_GENERATOR(i2c, "/sys/bus/i2c/devices/") PARSER_GENERATOR(hwmon, "/sys/class/hwmon/") PARSER_GENERATOR(platform, "/sys/bus/platform/devices/") void print_sysfs_sensor(struct text_object *obj, char *p, int p_max_size) { double r; struct sysfs *sf = (struct sysfs *)obj->data.opaque; if (!sf) return; r = get_sysfs_info(&sf->fd, sf->arg, sf->devtype, sf->type); r = r * sf->factor + sf->offset; if (!strncmp(sf->type, "temp", 4)) { temp_print(p, p_max_size, r, TEMP_CELSIUS); } else if (r >= 100.0 || r == 0) { snprintf(p, p_max_size, "%d", (int) r); } else { snprintf(p, p_max_size, "%.1f", r); } } void free_sysfs_sensor(struct text_object *obj) { struct sysfs *sf = (struct sysfs *)obj->data.opaque; if (!sf) return; close(sf->fd); free_and_zero(obj->data.opaque); } #define CPUFREQ_PREFIX "/sys/devices/system/cpu" #define CPUFREQ_POSTFIX "cpufreq/scaling_cur_freq" /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ char get_freq(char *p_client_buffer, size_t client_buffer_size, const char *p_format, int divisor, unsigned int cpu) { FILE *f; static int rep = 0; char frequency[32]; char s[256]; double freq = 0; if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) { return 0; } if (!prefer_proc) { char current_freq_file[128]; snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu - 1, CPUFREQ_POSTFIX); f = fopen(current_freq_file, "r"); if (f) { /* if there's a cpufreq /sys node, read the current frequency from * this node and divide by 1000 to get Mhz. */ if (fgets(s, sizeof(s), f)) { s[strlen(s) - 1] = '\0'; freq = strtod(s, NULL); } fclose(f); snprintf(p_client_buffer, client_buffer_size, p_format, (freq / 1000) / divisor); return 1; } } // open the CPU information file f = open_file("/proc/cpuinfo", &rep); if (!f) { perror(PACKAGE_NAME": Failed to access '/proc/cpuinfo' at get_freq()"); return 0; } // read the file while (fgets(s, sizeof(s), f) != NULL) { #if defined(__i386) || defined(__x86_64) // and search for the cpu mhz if (strncmp(s, "cpu MHz", 7) == 0 && cpu == 0) { #else #if defined(__alpha) // different on alpha if (strncmp(s, "cycle frequency [Hz]", 20) == 0 && cpu == 0) { #else // this is different on ppc for some reason if (strncmp(s, "clock", 5) == 0 && cpu == 0) { #endif // defined(__alpha) #endif // defined(__i386) || defined(__x86_64) // copy just the number strcpy(frequency, strchr(s, ':') + 2); #if defined(__alpha) // strip " est.\n" frequency[strlen(frequency) - 6] = '\0'; // kernel reports in Hz freq = strtod(frequency, NULL) / 1000000; #else // strip \n frequency[strlen(frequency) - 1] = '\0'; freq = strtod(frequency, NULL); #endif break; } if (strncmp(s, "processor", 9) == 0) { cpu--; continue; } } fclose(f); snprintf(p_client_buffer, client_buffer_size, p_format, (float) freq / divisor); return 1; } #define CPUFREQ_VOLTAGE "cpufreq/scaling_voltages" /* /sys/devices/system/cpu/cpu0/cpufreq/scaling_voltages looks something * like this: # frequency voltage 1800000 1340 1600000 1292 1400000 1100 1200000 988 1000000 1116 800000 1004 600000 988 * Peter Tarjan (ptarjan@citromail.hu) */ /* return cpu voltage in mV (use divisor=1) or V (use divisor=1000) */ static char get_voltage(char *p_client_buffer, size_t client_buffer_size, const char *p_format, int divisor, unsigned int cpu) { FILE *f; char s[256]; int freq = 0; int voltage = 0; char current_freq_file[128]; int freq_comp = 0; /* build the voltage file name */ cpu--; snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu, CPUFREQ_POSTFIX); if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) { return 0; } /* read the current cpu frequency from the /sys node */ f = fopen(current_freq_file, "r"); if (f) { if (fgets(s, sizeof(s), f)) { s[strlen(s) - 1] = '\0'; freq = strtod(s, NULL); } fclose(f); } else { fprintf(stderr, PACKAGE_NAME": Failed to access '%s' at ", current_freq_file); perror("get_voltage()"); if (f) { fclose(f); } return 0; } snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu, CPUFREQ_VOLTAGE); /* use the current cpu frequency to find the corresponding voltage */ f = fopen(current_freq_file, "r"); if (f) { while (!feof(f)) { char line[256]; if (fgets(line, 255, f) == NULL) { break; } sscanf(line, "%d %d", &freq_comp, &voltage); if (freq_comp == freq) { break; } } fclose(f); } else { fprintf(stderr, PACKAGE_NAME": Failed to access '%s' at ", current_freq_file); perror("get_voltage()"); if (f) { fclose(f); } return 0; } snprintf(p_client_buffer, client_buffer_size, p_format, (float) voltage / divisor); return 1; } void print_voltage_mv(struct text_object *obj, char *p, int p_max_size) { static int ok = 1; if (ok) { ok = get_voltage(p, p_max_size, "%.0f", 1, obj->data.i); } } void print_voltage_v(struct text_object *obj, char *p, int p_max_size) { static int ok = 1; if (ok) { ok = get_voltage(p, p_max_size, "%'.3f", 1000, obj->data.i); } } #define ACPI_FAN_DIR "/proc/acpi/fan/" void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) { static int rep = 0; char buf[256]; char buf2[256]; FILE *fp; if (!p_client_buffer || client_buffer_size <= 0) { return; } /* yeah, slow... :/ */ if (!get_first_file_in_a_directory(ACPI_FAN_DIR, buf, &rep)) { snprintf(p_client_buffer, client_buffer_size, "no fans?"); return; } snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_FAN_DIR, buf); fp = open_file(buf2, &rep); if (!fp) { snprintf(p_client_buffer, client_buffer_size, "can't open fan's state file"); return; } memset(buf, 0, sizeof(buf)); if (fscanf(fp, "%*s %99s", buf) <= 0) perror("fscanf()"); fclose(fp); snprintf(p_client_buffer, client_buffer_size, "%s", buf); } #define SYSFS_AC_ADAPTER_DIR "/sys/class/power_supply" #define ACPI_AC_ADAPTER_DIR "/proc/acpi/ac_adapter/" /* Linux 2.6.25 onwards ac adapter info is in /sys/class/power_supply/AC/ On my system I get the following. /sys/class/power_supply/AC/uevent: PHYSDEVPATH=/devices/LNXSYSTM:00/device:00/PNP0A08:00/device:01/PNP0C09:00/ACPI0003:00 PHYSDEVBUS=acpi PHYSDEVDRIVER=ac POWER_SUPPLY_NAME=AC POWER_SUPPLY_TYPE=Mains POWER_SUPPLY_ONLINE=1 Update: it seems the folder name is hardware-dependent. We add an aditional adapter argument, specifying the folder name. Update: on some systems it's /sys/class/power_supply/ADP1 instead of /sys/class/power_supply/AC */ void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size, const char *adapter) { static int rep = 0; char buf[256]; char buf2[256]; struct stat sb; FILE *fp; if (!p_client_buffer || client_buffer_size <= 0) { return; } if(adapter) snprintf(buf2, sizeof(buf2), "%s/%s/uevent", SYSFS_AC_ADAPTER_DIR, adapter); else{ snprintf(buf2, sizeof(buf2), "%s/AC/uevent", SYSFS_AC_ADAPTER_DIR); if(stat(buf2, &sb) == -1) snprintf(buf2, sizeof(buf2), "%s/ADP1/uevent", SYSFS_AC_ADAPTER_DIR); } if(stat(buf2, &sb) == 0) fp = open_file(buf2, &rep); else fp = 0; if (fp) { /* sysfs processing */ while (!feof(fp)) { if (fgets(buf, sizeof(buf), fp) == NULL) break; if (strncmp(buf, "POWER_SUPPLY_ONLINE=", 20) == 0) { int online = 0; sscanf(buf, "POWER_SUPPLY_ONLINE=%d", &online); snprintf(p_client_buffer, client_buffer_size, "%s-line", (online ? "on" : "off")); break; } } fclose(fp); } else { /* yeah, slow... :/ */ if (!get_first_file_in_a_directory(ACPI_AC_ADAPTER_DIR, buf, &rep)) { snprintf(p_client_buffer, client_buffer_size, "no ac_adapters?"); return; } snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_AC_ADAPTER_DIR, buf); fp = open_file(buf2, &rep); if (!fp) { snprintf(p_client_buffer, client_buffer_size, "No ac adapter found.... where is it?"); return; } memset(buf, 0, sizeof(buf)); if (fscanf(fp, "%*s %99s", buf) <= 0) perror("fscanf()"); fclose(fp); snprintf(p_client_buffer, client_buffer_size, "%s", buf); } } /* /proc/acpi/thermal_zone/THRM/cooling_mode cooling mode: active /proc/acpi/thermal_zone/THRM/polling_frequency /proc/acpi/thermal_zone/THRM/state state: ok /proc/acpi/thermal_zone/THRM/temperature temperature: 45 C /proc/acpi/thermal_zone/THRM/trip_points critical (S5): 73 C passive: 73 C: tc1=4 tc2=3 tsp=40 devices=0xcdf6e6c0 */ #define ACPI_THERMAL_DIR "/proc/acpi/thermal_zone/" #define ACPI_THERMAL_FORMAT "/proc/acpi/thermal_zone/%s/temperature" int open_acpi_temperature(const char *name) { char path[256]; char buf[256]; int fd; if (name == NULL || strcmp(name, "*") == 0) { static int rep = 0; if (!get_first_file_in_a_directory(ACPI_THERMAL_DIR, buf, &rep)) { return -1; } name = buf; } snprintf(path, 255, ACPI_THERMAL_FORMAT, name); fd = open(path, O_RDONLY); if (fd < 0) { NORM_ERR("can't open '%s': %s", path, strerror(errno)); } return fd; } static double last_acpi_temp; static double last_acpi_temp_time; double get_acpi_temperature(int fd) { if (fd <= 0) { return 0; } /* don't update acpi temperature too often */ if (current_update_time - last_acpi_temp_time < 11.32) { return last_acpi_temp; } last_acpi_temp_time = current_update_time; /* seek to beginning */ lseek(fd, 0, SEEK_SET); /* read */ { char buf[256]; int n; n = read(fd, buf, 255); if (n < 0) { NORM_ERR("can't read fd %d: %s", fd, strerror(errno)); } else { buf[n] = '\0'; sscanf(buf, "temperature: %lf", &last_acpi_temp); } } return last_acpi_temp; } /* hipo@lepakko hipo $ cat /proc/acpi/battery/BAT1/info present: yes design capacity: 4400 mAh last full capacity: 4064 mAh battery technology: rechargeable design voltage: 14800 mV design capacity warning: 300 mAh design capacity low: 200 mAh capacity granularity 1: 32 mAh capacity granularity 2: 32 mAh model number: 02KT serial number: 16922 battery type: LION OEM info: SANYO */ /* hipo@lepakko conky $ cat /proc/acpi/battery/BAT1/state present: yes capacity state: ok charging state: unknown present rate: 0 mA remaining capacity: 4064 mAh present voltage: 16608 mV */ /* 2213<@jupet�kellari��> jupet@lagi-unstable:~$ cat /proc/apm 2213<@jupet�kellari��> 1.16 1.2 0x03 0x01 0xff 0x10 -1% -1 ? 2213<@jupet�kellari��> (-1 ollee ei akkua kiinni, koska akku on p�yd�ll�) 2214<@jupet�kellari��> jupet@lagi-unstable:~$ cat /proc/apm 2214<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x03 0x09 98% -1 ? 2238<@jupet�kellari��> 1.16 1.2 0x03 0x00 0x00 0x01 100% -1 ? ilman verkkovirtaa 2239<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x00 0x01 99% -1 ? verkkovirralla 2240<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x03 0x09 100% -1 ? verkkovirralla ja monitori p��ll� 2241<@jupet�kellari��> 1.16 1.2 0x03 0x00 0x00 0x01 99% -1 ? monitori p��ll� mutta ilman verkkovirtaa */ /* Kapil Hari Paranjape Linux 2.6.24 onwards battery info is in /sys/class/power_supply/BAT0/ On my system I get the following. /sys/class/power_supply/BAT0/uevent: PHYSDEVPATH=/devices/LNXSYSTM:00/device:00/PNP0A03:00/device:01/PNP0C09:00/PNP0C0A:00 PHYSDEVBUS=acpi PHYSDEVDRIVER=battery POWER_SUPPLY_NAME=BAT0 POWER_SUPPLY_TYPE=Battery POWER_SUPPLY_STATUS=Discharging POWER_SUPPLY_PRESENT=1 POWER_SUPPLY_TECHNOLOGY=Li-ion POWER_SUPPLY_VOLTAGE_MIN_DESIGN=10800000 POWER_SUPPLY_VOLTAGE_NOW=10780000 POWER_SUPPLY_CURRENT_NOW=13970000 POWER_SUPPLY_ENERGY_FULL_DESIGN=47510000 POWER_SUPPLY_ENERGY_FULL=27370000 POWER_SUPPLY_ENERGY_NOW=11810000 POWER_SUPPLY_MODEL_NAME=IBM-92P1060 POWER_SUPPLY_MANUFACTURER=Panasonic On some systems POWER_SUPPLY_ENERGY_* is replaced by POWER_SUPPLY_CHARGE_* */ #define SYSFS_BATTERY_BASE_PATH "/sys/class/power_supply" #define ACPI_BATTERY_BASE_PATH "/proc/acpi/battery" #define APM_PATH "/proc/apm" #define MAX_BATTERY_COUNT 4 static FILE *sysfs_bat_fp[MAX_BATTERY_COUNT] = { NULL, NULL, NULL, NULL }; static FILE *acpi_bat_fp[MAX_BATTERY_COUNT] = { NULL, NULL, NULL, NULL }; static FILE *apm_bat_fp[MAX_BATTERY_COUNT] = { NULL, NULL, NULL, NULL }; static int batteries_initialized = 0; static char batteries[MAX_BATTERY_COUNT][32]; static int acpi_last_full[MAX_BATTERY_COUNT]; static int acpi_design_capacity[MAX_BATTERY_COUNT]; /* e.g. "charging 75%" */ static char last_battery_str[MAX_BATTERY_COUNT][64]; /* e.g. "3h 15m" */ static char last_battery_time_str[MAX_BATTERY_COUNT][64]; static double last_battery_time[MAX_BATTERY_COUNT]; static int last_battery_perct[MAX_BATTERY_COUNT]; static double last_battery_perct_time[MAX_BATTERY_COUNT]; void init_batteries(void) { int idx; if (batteries_initialized) { return; } #ifdef HAVE_OPENMP #pragma omp parallel for schedule(dynamic,10) #endif /* HAVE_OPENMP */ for (idx = 0; idx < MAX_BATTERY_COUNT; idx++) { batteries[idx][0] = '\0'; } batteries_initialized = 1; } int get_battery_idx(const char *bat) { int idx; for (idx = 0; idx < MAX_BATTERY_COUNT; idx++) { if (!strlen(batteries[idx]) || !strcmp(batteries[idx], bat)) { break; } } /* if not found, enter a new entry */ if (!strlen(batteries[idx])) { snprintf(batteries[idx], 31, "%s", bat); } return idx; } void set_return_value(char *buffer, unsigned int n, int item, int idx); void get_battery_stuff(char *buffer, unsigned int n, const char *bat, int item) { static int idx, rep = 0, rep1 = 0, rep2 = 0; char acpi_path[128]; char sysfs_path[128]; snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat); snprintf(sysfs_path, 127, SYSFS_BATTERY_BASE_PATH "/%s/uevent", bat); init_batteries(); idx = get_battery_idx(bat); /* don't update battery too often */ if (current_update_time - last_battery_time[idx] < 29.5) { set_return_value(buffer, n, item, idx); return; } last_battery_time[idx] = current_update_time; memset(last_battery_str[idx], 0, sizeof(last_battery_str[idx])); memset(last_battery_time_str[idx], 0, sizeof(last_battery_time_str[idx])); /* first try SYSFS if that fails try ACPI */ if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) { sysfs_bat_fp[idx] = open_file(sysfs_path, &rep); } if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) { acpi_bat_fp[idx] = open_file(acpi_path, &rep1); } if (sysfs_bat_fp[idx] != NULL) { /* SYSFS */ int present_rate = -1; int remaining_capacity = -1; char charging_state[64]; char present[4]; strcpy(charging_state, "unknown"); while (!feof(sysfs_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, sysfs_bat_fp[idx]) == NULL) break; /* let's just hope units are ok */ if (strncmp (buf, "POWER_SUPPLY_PRESENT=1", 22) == 0) strcpy(present, "yes"); else if (strncmp (buf, "POWER_SUPPLY_PRESENT=0", 22) == 0) strcpy(present, "no"); else if (strncmp (buf, "POWER_SUPPLY_STATUS=", 20) == 0) sscanf(buf, "POWER_SUPPLY_STATUS=%63s", charging_state); /* present_rate is not the same as the current flowing now but it * is the same value which was used in the past. so we continue the * tradition! */ else if (strncmp(buf, "POWER_SUPPLY_CURRENT_NOW=", 25) == 0) sscanf(buf, "POWER_SUPPLY_CURRENT_NOW=%d", &present_rate); else if (strncmp(buf, "POWER_SUPPLY_ENERGY_NOW=", 24) == 0) sscanf(buf, "POWER_SUPPLY_ENERGY_NOW=%d", &remaining_capacity); else if (strncmp(buf, "POWER_SUPPLY_ENERGY_FULL=", 25) == 0) sscanf(buf, "POWER_SUPPLY_ENERGY_FULL=%d", &acpi_last_full[idx]); else if (strncmp(buf, "POWER_SUPPLY_CHARGE_NOW=", 24) == 0) sscanf(buf, "POWER_SUPPLY_CHARGE_NOW=%d", &remaining_capacity); else if (strncmp(buf, "POWER_SUPPLY_CHARGE_FULL=", 25) == 0) sscanf(buf, "POWER_SUPPLY_CHARGE_FULL=%d", &acpi_last_full[idx]); } fclose(sysfs_bat_fp[idx]); sysfs_bat_fp[idx] = NULL; /* Hellf[i]re notes that remaining capacity can exceed acpi_last_full */ if (remaining_capacity > acpi_last_full[idx]) acpi_last_full[idx] = remaining_capacity; /* normalize to 100% */ /* not present */ if (strcmp(present, "No") == 0) { strncpy(last_battery_str[idx], "not present", 64); } /* charging */ else if (strcmp(charging_state, "Charging") == 0) { if (acpi_last_full[idx] != 0 && present_rate > 0) { /* e.g. charging 75% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "charging %i%%", (int) (((float) remaining_capacity / acpi_last_full[idx]) * 100 )); /* e.g. 2h 37m */ format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx])-1, (long) (((float)(acpi_last_full[idx] - remaining_capacity) / present_rate) * 3600)); } else if (acpi_last_full[idx] != 0 && present_rate <= 0) { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "charging %d%%", (int) (((float)remaining_capacity / acpi_last_full[idx]) * 100)); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "unknown"); } else { strncpy(last_battery_str[idx], "charging", sizeof(last_battery_str[idx])-1); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "unknown"); } } /* discharging */ else if (strncmp(charging_state, "Discharging", 64) == 0) { if (present_rate > 0) { /* e.g. discharging 35% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "discharging %i%%", (int) (((float) remaining_capacity / acpi_last_full[idx]) * 100 )); /* e.g. 1h 12m */ format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx])-1, (long) (((float) remaining_capacity / present_rate) * 3600)); } else if (present_rate == 0) { /* Thanks to Nexox for this one */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "full"); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "unknown"); } else { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "discharging %d%%", (int) (((float)remaining_capacity / acpi_last_full[idx]) * 100)); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "unknown"); } } /* charged */ /* thanks to Lukas Zapletal */ else if (strncmp(charging_state, "Charged", 64) == 0 || strncmp(charging_state, "Full", 64) == 0) { /* Below happens with the second battery on my X40, * when the second one is empty and the first one * being charged. */ if (remaining_capacity == 0) strcpy(last_battery_str[idx], "empty"); else strcpy(last_battery_str[idx], "charged"); } /* unknown, probably full / AC */ else { if (acpi_last_full[idx] != 0 && remaining_capacity != acpi_last_full[idx]) snprintf(last_battery_str[idx], 64, "unknown %d%%", (int) (((float)remaining_capacity / acpi_last_full[idx]) * 100)); else strncpy(last_battery_str[idx], "AC", 64); } } else if (acpi_bat_fp[idx] != NULL) { /* ACPI */ int present_rate = -1; int remaining_capacity = -1; char charging_state[64]; char present[4]; /* read last full capacity if it's zero */ if (acpi_last_full[idx] == 0) { static int rep3 = 0; char path[128]; FILE *fp; snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat); fp = open_file(path, &rep3); if (fp != NULL) { while (!feof(fp)) { char b[256]; if (fgets(b, 256, fp) == NULL) { break; } if (sscanf(b, "last full capacity: %d", &acpi_last_full[idx]) != 0) { break; } } fclose(fp); } } fseek(acpi_bat_fp[idx], 0, SEEK_SET); strcpy(charging_state, "unknown"); while (!feof(acpi_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, acpi_bat_fp[idx]) == NULL) { break; } /* let's just hope units are ok */ if (strncmp(buf, "present:", 8) == 0) { sscanf(buf, "present: %4s", present); } else if (strncmp(buf, "charging state:", 15) == 0) { sscanf(buf, "charging state: %63s", charging_state); } else if (strncmp(buf, "present rate:", 13) == 0) { sscanf(buf, "present rate: %d", &present_rate); } else if (strncmp(buf, "remaining capacity:", 19) == 0) { sscanf(buf, "remaining capacity: %d", &remaining_capacity); } } /* Hellf[i]re notes that remaining capacity can exceed acpi_last_full */ if (remaining_capacity > acpi_last_full[idx]) { /* normalize to 100% */ acpi_last_full[idx] = remaining_capacity; } /* not present */ if (strcmp(present, "no") == 0) { strncpy(last_battery_str[idx], "not present", 64); /* charging */ } else if (strcmp(charging_state, "charging") == 0) { if (acpi_last_full[idx] != 0 && present_rate > 0) { /* e.g. charging 75% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "charging %i%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); /* e.g. 2h 37m */ format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, (long) (((acpi_last_full[idx] - remaining_capacity) * 3600) / present_rate)); } else if (acpi_last_full[idx] != 0 && present_rate <= 0) { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "charging %d%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "unknown"); } else { strncpy(last_battery_str[idx], "charging", sizeof(last_battery_str[idx]) - 1); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "unknown"); } /* discharging */ } else if (strncmp(charging_state, "discharging", 64) == 0) { if (present_rate > 0) { /* e.g. discharging 35% */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "discharging %i%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); /* e.g. 1h 12m */ format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, (long) ((remaining_capacity * 3600) / present_rate)); } else if (present_rate == 0) { /* Thanks to Nexox for this one */ snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "full"); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "unknown"); } else { snprintf(last_battery_str[idx], sizeof(last_battery_str[idx]) - 1, "discharging %d%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); snprintf(last_battery_time_str[idx], sizeof(last_battery_time_str[idx]) - 1, "unknown"); } /* charged */ } else if (strncmp(charging_state, "charged", 64) == 0) { /* thanks to Lukas Zapletal */ /* Below happens with the second battery on my X40, * when the second one is empty and the first one being charged. */ if (remaining_capacity == 0) { strcpy(last_battery_str[idx], "empty"); } else { strcpy(last_battery_str[idx], "charged"); } /* unknown, probably full / AC */ } else { if (strncmp(charging_state, "Full", 64) == 0) { strncpy(last_battery_str[idx], "full", 64); } else if (acpi_last_full[idx] != 0 && remaining_capacity != acpi_last_full[idx]) { snprintf(last_battery_str[idx], 64, "unknown %d%%", (int) ((remaining_capacity * 100) / acpi_last_full[idx])); } else { strncpy(last_battery_str[idx], "AC", 64); } } fclose(acpi_bat_fp[idx]); acpi_bat_fp[idx] = NULL; } else { /* APM */ if (apm_bat_fp[idx] == NULL) { apm_bat_fp[idx] = open_file(APM_PATH, &rep2); } if (apm_bat_fp[idx] != NULL) { unsigned int ac, status, flag; int life; if (fscanf(apm_bat_fp[idx], "%*s %*s %*x %x %x %x %d%%", &ac, &status, &flag, &life) <= 0) goto read_bat_fp_end; if (life == -1) { /* could check now that there is ac */ snprintf(last_battery_str[idx], 64, "AC"); /* could check that status == 3 here? */ } else if (ac && life != 100) { snprintf(last_battery_str[idx], 64, "charging %d%%", life); } else { snprintf(last_battery_str[idx], 64, "%d%%", life); } read_bat_fp_end: /* it seemed to buffer it so file must be closed (or could use * syscalls directly but I don't feel like coding it now) */ fclose(apm_bat_fp[idx]); apm_bat_fp[idx] = NULL; } } set_return_value(buffer, n, item, idx); } void set_return_value(char *buffer, unsigned int n, int item, int idx) { switch (item) { case BATTERY_STATUS: snprintf(buffer, n, "%s", last_battery_str[idx]); break; case BATTERY_TIME: snprintf(buffer, n, "%s", last_battery_time_str[idx]); break; default: break; } } void get_battery_short_status(char *buffer, unsigned int n, const char *bat) { get_battery_stuff(buffer, n, bat, BATTERY_STATUS); if (0 == strncmp("charging", buffer, 8)) { buffer[0] = 'C'; memmove(buffer + 1, buffer + 8, n - 8); } else if (0 == strncmp("discharging", buffer, 11)) { buffer[0] = 'D'; memmove(buffer + 1, buffer + 11, n - 11); } else if (0 == strncmp("charged", buffer, 7)) { buffer[0] = 'F'; memmove(buffer + 1, buffer + 7, n - 7); } else if (0 == strncmp("not present", buffer, 11)) { buffer[0] = 'N'; memmove(buffer + 1, buffer + 11, n - 11); } else if (0 == strncmp("empty", buffer, 5)) { buffer[0] = 'E'; memmove(buffer + 1, buffer + 5, n - 5); } else if (0 != strncmp("AC", buffer, 2)) { buffer[0] = 'U'; memmove(buffer + 1, buffer + 11, n - 11); } } int get_battery_perct(const char *bat) { static int rep = 0; int idx; char acpi_path[128]; char sysfs_path[128]; int remaining_capacity = -1; snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat); snprintf(sysfs_path, 127, SYSFS_BATTERY_BASE_PATH "/%s/uevent", bat); init_batteries(); idx = get_battery_idx(bat); /* don't update battery too often */ if (current_update_time - last_battery_perct_time[idx] < 30) { return last_battery_perct[idx]; } last_battery_perct_time[idx] = current_update_time; /* Only check for SYSFS or ACPI */ if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) { sysfs_bat_fp[idx] = open_file(sysfs_path, &rep); rep = 0; } if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL) { acpi_bat_fp[idx] = open_file(acpi_path, &rep); } if (sysfs_bat_fp[idx] != NULL) { /* SYSFS */ while (!feof(sysfs_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, sysfs_bat_fp[idx]) == NULL) break; if (strncmp(buf, "POWER_SUPPLY_CHARGE_NOW=", 24) == 0) { sscanf(buf, "POWER_SUPPLY_CHARGE_NOW=%d", &remaining_capacity); } else if (strncmp(buf, "POWER_SUPPLY_CHARGE_FULL=",25) == 0) { sscanf(buf, "POWER_SUPPLY_CHARGE_FULL=%d", &acpi_design_capacity[idx]); } else if (strncmp(buf, "POWER_SUPPLY_ENERGY_NOW=", 24) == 0) { sscanf(buf, "POWER_SUPPLY_ENERGY_NOW=%d", &remaining_capacity); } else if (strncmp(buf, "POWER_SUPPLY_ENERGY_FULL=",25) == 0) { sscanf(buf, "POWER_SUPPLY_ENERGY_FULL=%d", &acpi_design_capacity[idx]); } } fclose(sysfs_bat_fp[idx]); sysfs_bat_fp[idx] = NULL; } else if (acpi_bat_fp[idx] != NULL) { /* ACPI */ /* read last full capacity if it's zero */ if (acpi_design_capacity[idx] == 0) { static int rep2; char path[128]; FILE *fp; snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat); fp = open_file(path, &rep2); if (fp != NULL) { while (!feof(fp)) { char b[256]; if (fgets(b, 256, fp) == NULL) { break; } if (sscanf(b, "last full capacity: %d", &acpi_design_capacity[idx]) != 0) { break; } } fclose(fp); } } fseek(acpi_bat_fp[idx], 0, SEEK_SET); while (!feof(acpi_bat_fp[idx])) { char buf[256]; if (fgets(buf, 256, acpi_bat_fp[idx]) == NULL) { break; } if (buf[0] == 'r') { sscanf(buf, "remaining capacity: %d", &remaining_capacity); } } } if (remaining_capacity < 0) { return 0; } /* compute the battery percentage */ last_battery_perct[idx] = (int) (((float) remaining_capacity / acpi_design_capacity[idx]) * 100); if (last_battery_perct[idx] > 100) last_battery_perct[idx] = 100; return last_battery_perct[idx]; } double get_battery_perct_bar(struct text_object *obj) { int idx; get_battery_perct(obj->data.s); idx = get_battery_idx(obj->data.s); return last_battery_perct[idx]; } /* On Apple powerbook and ibook: $ cat /proc/pmu/battery_0 flags : 00000013 charge : 3623 max_charge : 3720 current : 388 voltage : 16787 time rem. : 900 $ cat /proc/pmu/info PMU driver version : 2 PMU firmware version : 0c AC Power : 1 Battery count : 1 */ /* defines as in */ #define PMU_BATT_PRESENT 0x00000001 #define PMU_BATT_CHARGING 0x00000002 static FILE *pmu_battery_fp; static FILE *pmu_info_fp; static char pb_battery_info[3][32]; static double pb_battery_info_update; #define PMU_PATH "/proc/pmu" void get_powerbook_batt_info(struct text_object *obj, char *buffer, int n) { static int rep = 0; const char *batt_path = PMU_PATH "/battery_0"; const char *info_path = PMU_PATH "/info"; unsigned int flags; int charge, max_charge, ac = -1; long timeval = -1; /* don't update battery too often */ if (current_update_time - pb_battery_info_update < 29.5) { snprintf(buffer, n, "%s", pb_battery_info[obj->data.i]); return; } pb_battery_info_update = current_update_time; if (pmu_battery_fp == NULL) { pmu_battery_fp = open_file(batt_path, &rep); if (pmu_battery_fp == NULL) { return; } } if (pmu_battery_fp != NULL) { rewind(pmu_battery_fp); while (!feof(pmu_battery_fp)) { char buf[32]; if (fgets(buf, sizeof(buf), pmu_battery_fp) == NULL) { break; } if (buf[0] == 'f') { sscanf(buf, "flags : %8x", &flags); } else if (buf[0] == 'c' && buf[1] == 'h') { sscanf(buf, "charge : %d", &charge); } else if (buf[0] == 'm') { sscanf(buf, "max_charge : %d", &max_charge); } else if (buf[0] == 't') { sscanf(buf, "time rem. : %ld", &timeval); } } } if (pmu_info_fp == NULL) { pmu_info_fp = open_file(info_path, &rep); if (pmu_info_fp == NULL) { return; } } if (pmu_info_fp != NULL) { rewind(pmu_info_fp); while (!feof(pmu_info_fp)) { char buf[32]; if (fgets(buf, sizeof(buf), pmu_info_fp) == NULL) { break; } if (buf[0] == 'A') { sscanf(buf, "AC Power : %d", &ac); } } } /* update status string */ if ((ac && !(flags & PMU_BATT_PRESENT))) { strncpy(pb_battery_info[PB_BATT_STATUS], "AC", sizeof(pb_battery_info[PB_BATT_STATUS])); } else if (ac && (flags & PMU_BATT_PRESENT) && !(flags & PMU_BATT_CHARGING)) { strncpy(pb_battery_info[PB_BATT_STATUS], "charged", sizeof(pb_battery_info[PB_BATT_STATUS])); } else if ((flags & PMU_BATT_PRESENT) && (flags & PMU_BATT_CHARGING)) { strncpy(pb_battery_info[PB_BATT_STATUS], "charging", sizeof(pb_battery_info[PB_BATT_STATUS])); } else { strncpy(pb_battery_info[PB_BATT_STATUS], "discharging", sizeof(pb_battery_info[PB_BATT_STATUS])); } /* update percentage string */ if (timeval == 0 && ac && (flags & PMU_BATT_PRESENT) && !(flags & PMU_BATT_CHARGING)) { snprintf(pb_battery_info[PB_BATT_PERCENT], sizeof(pb_battery_info[PB_BATT_PERCENT]), "100%%"); } else if (timeval == 0) { snprintf(pb_battery_info[PB_BATT_PERCENT], sizeof(pb_battery_info[PB_BATT_PERCENT]), "unknown"); } else { snprintf(pb_battery_info[PB_BATT_PERCENT], sizeof(pb_battery_info[PB_BATT_PERCENT]), "%d%%", (charge * 100) / max_charge); } /* update time string */ if (timeval == 0) { /* fully charged or battery not present */ snprintf(pb_battery_info[PB_BATT_TIME], sizeof(pb_battery_info[PB_BATT_TIME]), "unknown"); } else if (timeval < 60 * 60) { /* don't show secs */ format_seconds_short(pb_battery_info[PB_BATT_TIME], sizeof(pb_battery_info[PB_BATT_TIME]), timeval); } else { format_seconds(pb_battery_info[PB_BATT_TIME], sizeof(pb_battery_info[PB_BATT_TIME]), timeval); } snprintf(buffer, n, "%s", pb_battery_info[obj->data.i]); } #define ENTROPY_AVAIL_PATH "/proc/sys/kernel/random/entropy_avail" int get_entropy_avail(unsigned int *val) { static int rep = 0; FILE *fp; if (!(fp = open_file(ENTROPY_AVAIL_PATH, &rep))) return 1; if (fscanf(fp, "%u", val) != 1) return 1; fclose(fp); return 0; } #define ENTROPY_POOLSIZE_PATH "/proc/sys/kernel/random/poolsize" int get_entropy_poolsize(unsigned int *val) { static int rep = 0; FILE *fp; if (!(fp = open_file(ENTROPY_POOLSIZE_PATH, &rep))) return 1; if (fscanf(fp, "%u", val) != 1) return 1; fclose(fp); return 0; } void print_disk_protect_queue(struct text_object *obj, char *p, int p_max_size) { FILE *fp; char path[128]; int state; snprintf(path, 127, "/sys/block/%s/device/unload_heads", obj->data.s); if (access(path, F_OK)) { snprintf(path, 127, "/sys/block/%s/queue/protect", obj->data.s); } if ((fp = fopen(path, "r")) == NULL) { snprintf(p, p_max_size, "n/a "); return; } if (fscanf(fp, "%d\n", &state) != 1) { fclose(fp); snprintf(p, p_max_size, "failed"); return; } fclose(fp); snprintf(p, p_max_size, (state > 0) ? "frozen" : "free "); } typedef struct DEV_LIST_TYPE { char *dev_name; int memoized; struct DEV_LIST_TYPE *next; } DEV_LIST, *DEV_LIST_PTR; /* Same as sf #2942117 but memoized using a linked list */ int is_disk(char *dev) { char syspath[PATH_MAX]; char *slash; static DEV_LIST_PTR dev_head = NULL; DEV_LIST_PTR dev_cur, dev_last; dev_cur = dev_head; while (dev_cur) { if (strcmp(dev_cur->dev_name, dev) == 0) return dev_cur->memoized; dev_last = dev_cur; dev_cur = dev_cur->next; } dev_cur = (DEV_LIST_PTR)malloc(sizeof(DEV_LIST)); dev_cur->dev_name = (char *)malloc((strlen(dev)+1)*sizeof(char)); strcpy(dev_cur->dev_name,dev); dev_cur->next = NULL; while ((slash = strchr(dev, '/'))) *slash = '!'; snprintf(syspath, sizeof(syspath), "/sys/block/%s", dev); dev_cur->memoized = !(access(syspath, F_OK)); if (dev_head) dev_last->next = dev_cur; else dev_head = dev_cur; return dev_cur->memoized; } int update_diskio(void) { FILE *fp; static int rep = 0; char buf[512], devbuf[64]; unsigned int major, minor; int col_count = 0; struct diskio_stat *cur; unsigned int reads, writes; unsigned int total_reads = 0, total_writes = 0; stats.current = 0; stats.current_read = 0; stats.current_write = 0; if (!(fp = open_file("/proc/diskstats", &rep))) { return 0; } /* read reads and writes from all disks (minor = 0), including cd-roms * and floppies, and sum them up */ while (fgets(buf, 512, fp)) { col_count = sscanf(buf, "%u %u %s %*u %*u %u %*u %*u %*u %u", &major, &minor, devbuf, &reads, &writes); /* ignore subdevices (they have only 3 matching entries in their line) * and virtual devices (LVM, network block devices, RAM disks, Loopback) * * XXX: ignore devices which are part of a SW RAID (MD_MAJOR) */ if (col_count == 5 && major != LVM_BLK_MAJOR && major != NBD_MAJOR && major != RAMDISK_MAJOR && major != LOOP_MAJOR) { /* check needed for kernel >= 2.6.31, see sf #2942117 */ if (is_disk(devbuf)) { total_reads += reads; total_writes += writes; } } else { col_count = sscanf(buf, "%u %u %s %*u %u %*u %u", &major, &minor, devbuf, &reads, &writes); if (col_count != 5) { continue; } } cur = stats.next; while (cur && strcmp(devbuf, cur->dev)) cur = cur->next; if (cur) update_diskio_values(cur, reads, writes); } update_diskio_values(&stats, total_reads, total_writes); fclose(fp); return 0; } void print_distribution(struct text_object *obj, char *p, int p_max_size) { (void)obj; int i, bytes_read; char* buf; struct stat sb; if(stat("/etc/arch-release", &sb) == 0) { snprintf(p, p_max_size, "Arch Linux"); return; } snprintf(p, p_max_size, "Unknown"); buf = readfile("/proc/version", &bytes_read, 1); if(buf) { /* I am assuming the distribution name is the first string in /proc/version that: - is preceded by a '(' - starts with a capital - is followed by a space and a number but i am not sure if this is always true... */ for(i=1; i= 'A' && buf[i] <= 'Z') break; } if(i < bytes_read) { snprintf(p, p_max_size, "%s", &buf[i]); for(i=1; p[i]; i++) { if(p[i-1] == ' ' && p[i] >= '0' && p[i] <= '9') { p[i-1] = 0; break; } } } free(buf); } } /****************************************** * Calculate cpu total * ******************************************/ #define TMPL_SHORTPROC "%*s %llu %llu %llu %llu" #define TMPL_LONGPROC "%*s %llu %llu %llu %llu %llu %llu %llu %llu" static unsigned long long calc_cpu_total(void) { static unsigned long long previous_total = 0; unsigned long long total = 0; unsigned long long t = 0; int rc; int ps; char line[BUFFER_LEN] = { 0 }; unsigned long long cpu = 0; unsigned long long niceval = 0; unsigned long long systemval = 0; unsigned long long idle = 0; unsigned long long iowait = 0; unsigned long long irq = 0; unsigned long long softirq = 0; unsigned long long steal = 0; const char *template_ = KFLAG_ISSET(KFLAG_IS_LONGSTAT) ? TMPL_LONGPROC : TMPL_SHORTPROC; ps = open("/proc/stat", O_RDONLY); rc = read(ps, line, sizeof(line)); close(ps); if (rc < 0) { return 0; } sscanf(line, template_, &cpu, &niceval, &systemval, &idle, &iowait, &irq, &softirq, &steal); total = cpu + niceval + systemval + idle + iowait + irq + softirq + steal; t = total - previous_total; previous_total = total; return t; } /****************************************** * Calculate each processes cpu * ******************************************/ inline static void calc_cpu_each(unsigned long long total) { struct process *p = first_process; while (p) { p->amount = 100.0 * (cpu_separate ? info.cpu_count : 1) * (p->user_time + p->kernel_time) / (float) total; p = p->next; } } #ifdef BUILD_IOSTATS static void calc_io_each(void) { struct process *p; unsigned long long sum = 0; for (p = first_process; p; p = p->next) sum += p->read_bytes + p->write_bytes; if(sum == 0) sum = 1; /* to avoid having NANs if no I/O occured */ for (p = first_process; p; p = p->next) p->io_perc = 100.0 * (p->read_bytes + p->write_bytes) / (float) sum; } #endif /* BUILD_IOSTATS */ /****************************************** * Extract information from /proc * ******************************************/ #define PROCFS_TEMPLATE "/proc/%d/stat" #define PROCFS_CMDLINE_TEMPLATE "/proc/%d/cmdline" /* These are the guts that extract information out of /proc. * Anyone hoping to port wmtop should look here first. */ static void process_parse_stat(struct process *process) { char line[BUFFER_LEN] = { 0 }, filename[BUFFER_LEN], procname[BUFFER_LEN]; char state[4]; int ps; unsigned long user_time = 0; unsigned long kernel_time = 0; int rc; char *r, *q; int endl; int nice_val; char *lparen, *rparen; snprintf(filename, sizeof(filename), PROCFS_TEMPLATE, process->pid); ps = open(filename, O_RDONLY); if (ps < 0) { /* The process must have finished in the last few jiffies! */ return; } /* Mark process as up-to-date. */ process->time_stamp = g_time; rc = read(ps, line, sizeof(line)); close(ps); if (rc < 0) { return; } /* Extract cpu times from data in /proc filesystem */ lparen = strchr(line, '('); rparen = strrchr(line, ')'); if(!lparen || !rparen || rparen < lparen) return; // this should not happen rc = MIN((unsigned)(rparen - lparen - 1), sizeof(procname) - 1); strncpy(procname, lparen + 1, rc); procname[rc] = '\0'; rc = sscanf(rparen + 1, "%3s %*s %*s %*s %*s %*s %*s %*s %*s %*s %*s %lu " "%lu %*s %*s %*s %d %*s %*s %*s %u %u", state, &process->user_time, &process->kernel_time, &nice_val, &process->vsize, &process->rss); if (rc < 6) { NORM_ERR("scaning data for %s failed, got only %d fields", procname, rc); return; } if(state[0]=='R') ++ info.run_procs; /* remove any "kdeinit: " */ if (procname == strstr(procname, "kdeinit")) { snprintf(filename, sizeof(filename), PROCFS_CMDLINE_TEMPLATE, process->pid); ps = open(filename, O_RDONLY); if (ps < 0) { /* The process must have finished in the last few jiffies! */ return; } endl = read(ps, line, sizeof(line)); close(ps); /* null terminate the input */ line[endl] = 0; /* account for "kdeinit: " */ if ((char *) line == strstr(line, "kdeinit: ")) { r = ((char *) line) + 9; } else { r = (char *) line; } q = procname; /* stop at space */ while (*r && *r != ' ') { *q++ = *r++; } *q = 0; } free_and_zero(process->name); process->name = strndup(procname, text_buffer_size); process->rss *= getpagesize(); process->total_cpu_time = process->user_time + process->kernel_time; if (process->previous_user_time == ULONG_MAX) { process->previous_user_time = process->user_time; } if (process->previous_kernel_time == ULONG_MAX) { process->previous_kernel_time = process->kernel_time; } /* strangely, the values aren't monotonous */ if (process->previous_user_time > process->user_time) process->previous_user_time = process->user_time; if (process->previous_kernel_time > process->kernel_time) process->previous_kernel_time = process->kernel_time; /* store the difference of the user_time */ user_time = process->user_time - process->previous_user_time; kernel_time = process->kernel_time - process->previous_kernel_time; /* backup the process->user_time for next time around */ process->previous_user_time = process->user_time; process->previous_kernel_time = process->kernel_time; /* store only the difference of the user_time here... */ process->user_time = user_time; process->kernel_time = kernel_time; } #ifdef BUILD_IOSTATS #define PROCFS_TEMPLATE_IO "/proc/%d/io" static void process_parse_io(struct process *process) { static const char *read_bytes_str="read_bytes:"; static const char *write_bytes_str="write_bytes:"; char line[BUFFER_LEN] = { 0 }, filename[BUFFER_LEN]; int ps; int rc; char *pos, *endpos; unsigned long long read_bytes, write_bytes; snprintf(filename, sizeof(filename), PROCFS_TEMPLATE_IO, process->pid); ps = open(filename, O_RDONLY); if (ps < 0) { /* The process must have finished in the last few jiffies! * Or, the kernel doesn't support I/O accounting. */ return; } rc = read(ps, line, sizeof(line)); close(ps); if (rc < 0) { return; } pos = strstr(line, read_bytes_str); if (pos == NULL) { /* these should not happen (unless the format of the file changes) */ return; } pos += strlen(read_bytes_str); process->read_bytes = strtoull(pos, &endpos, 10); if (endpos == pos) { return; } pos = strstr(line, write_bytes_str); if (pos == NULL) { return; } pos += strlen(write_bytes_str); process->write_bytes = strtoull(pos, &endpos, 10); if (endpos == pos) { return; } if (process->previous_read_bytes == ULLONG_MAX) { process->previous_read_bytes = process->read_bytes; } if (process->previous_write_bytes == ULLONG_MAX) { process->previous_write_bytes = process->write_bytes; } /* store the difference of the byte counts */ read_bytes = process->read_bytes - process->previous_read_bytes; write_bytes = process->write_bytes - process->previous_write_bytes; /* backup the counts for next time around */ process->previous_read_bytes = process->read_bytes; process->previous_write_bytes = process->write_bytes; /* store only the difference here... */ process->read_bytes = read_bytes; process->write_bytes = write_bytes; } #endif /* BUILD_IOSTATS */ /****************************************** * Get process structure for process pid * ******************************************/ /* This function seems to hog all of the CPU time. * I can't figure out why - it doesn't do much. */ static void calculate_stats(struct process *process) { /* compute each process cpu usage by reading /proc//stat */ process_parse_stat(process); #ifdef BUILD_IOSTATS process_parse_io(process); #endif /* BUILD_IOSTATS */ /* * Check name against the exclusion list */ /* if (process->counted && exclusion_expression && * !regexec(exclusion_expression, process->name, 0, 0, 0)) * process->counted = 0; */ } /****************************************** * Update process table * ******************************************/ static void update_process_table(void) { DIR *dir; struct dirent *entry; if (!(dir = opendir("/proc"))) { return; } info.run_procs = 0; /* Get list of processes from /proc directory */ while ((entry = readdir(dir))) { pid_t pid; if (!entry) { /* Problem reading list of processes */ closedir(dir); return; } if (sscanf(entry->d_name, "%d", &pid) > 0) { struct process *p; p = find_process(pid); if (!p) { p = new_process(pid); } /* compute each process cpu usage */ calculate_stats(p); } } closedir(dir); } void get_top_info(void) { unsigned long long total = 0; total = calc_cpu_total(); /* calculate the total of the processor */ update_process_table(); /* update the table with process list */ calc_cpu_each(total); /* and then the percentage for each task */ #ifdef BUILD_IOSTATS calc_io_each(); /* percentage of I/O for each task */ #endif /* BUILD_IOSTATS */ }