#include "conky.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) #define KELVTOC(x) ((x - 2732) / 10.0) #if defined(i386) || defined(__i386__) static unsigned int get_timer(); static unsigned int get_cpu_speed(void); static inline unsigned long long int rdtsc(void); /* cpu frequency detection code based on mplayer's one */ static unsigned int get_timer() { struct timeval tv; struct timezone tz; gettimeofday(&tv, &tz); return (tv.tv_sec * 1000000 + tv.tv_usec); } static inline unsigned long long int rdtsc(void) { unsigned long long int retval; __asm __volatile("rdtsc":"=A"(retval)::"memory"); return retval; } static unsigned int get_cpu_speed(void) { unsigned long long int tscstart, tscstop; unsigned int start, stop; tscstart = rdtsc(); start = get_timer(); usleep(50000); stop = get_timer(); tscstop = rdtsc(); return ((tscstop - tscstart) / ((stop - start) / 1000.0)); } #endif static int getsysctl(char *name, void *ptr, size_t len) { size_t nlen = len; if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { return -1; } if (nlen != len) { return -1; } return 0; } static kvm_t *kd = NULL; struct ifmibdata *data = NULL; size_t len = 0; static int swapmode(int *retavail, int *retfree) { int n; int pagesize = getpagesize(); struct kvm_swap swapary[1]; static int kd_init = 1; if (kd_init) { kd_init = 0; if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL) { (void) fprintf(stderr, "Cannot read kvm."); return -1; } } if (kd == NULL) { return -1; } *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) return (0); *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); n = (int) ((double) swapary[0].ksw_used * 100.0 / (double) swapary[0].ksw_total); return n; } void prepare_update() { } /*double get_uptime() */ void update_uptime() { int mib[2] = { CTL_KERN, KERN_BOOTTIME }; struct timeval boottime; time_t now; size_t size = sizeof(boottime); if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1) && (boottime.tv_sec != 0)) { time(&now); info.uptime = now - boottime.tv_sec; } else { (void) fprintf(stderr, "Could not get uptime\n"); info.uptime = 0; } } void update_meminfo() { int total_pages, inactive_pages, free_pages; int swap_avail, swap_free; int pagesize = getpagesize(); if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages)) (void) fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_page_count\""); if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages)) (void) fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_free_count\""); if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages)) (void) fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_inactive_count\""); info.memmax = (total_pages * pagesize) >> 10; info.mem = ((total_pages - free_pages - inactive_pages) * pagesize) >> 10; if ((swapmode(&swap_avail, &swap_free)) >= 0) { info.swapmax = swap_avail; info.swap = (swap_avail - swap_free); } else { info.swapmax = 0; info.swap = 0; } } void update_net_stats() { struct net_stat *ns; double delta; long long r, t, last_recv, last_trans; struct ifaddrs *ifap, *ifa; struct if_data *ifd; /* get delta */ delta = current_update_time - last_update_time; if (delta <= 0.0001) return; if (getifaddrs(&ifap) < 0) return; for (ifa = ifap; ifa; ifa = ifa->ifa_next) { ns = get_net_stat((const char *) ifa->ifa_name); if (ifa->ifa_flags & IFF_UP) { last_recv = ns->recv; last_trans = ns->trans; if (ifa->ifa_addr->sa_family != AF_LINK) continue; ifd = (struct if_data *) ifa->ifa_data; r = ifd->ifi_ibytes; t = ifd->ifi_obytes; if (r < ns->last_read_recv) ns->recv += ((long long) 4294967295U - ns->last_read_recv) + r; else ns->recv += (r - ns->last_read_recv); ns->last_read_recv = r; if (t < ns->last_read_trans) ns->trans += ((long long) 4294967295U - ns->last_read_trans) + t; else ns->trans += (t - ns->last_read_trans); ns->last_read_trans = t; /* calculate speeds */ ns->recv_speed = (ns->recv - last_recv) / delta; ns->trans_speed = (ns->trans - last_trans) / delta; } } freeifaddrs(ifap); } void update_total_processes() { /* It's easier to use kvm here than sysctl */ int n_processes; static int kd_init = 1; if (kd_init) { kd_init = 0; if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL) { (void) fprintf(stderr, "Cannot read kvm."); return; } } if (kd != NULL) kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes); else return; info.procs = n_processes; } void update_running_processes() { static int kd_init = 1; struct kinfo_proc *p; int n_processes; int i, cnt = 0; if (kd_init) { kd_init = 0; if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL) { (void) fprintf(stderr, "Cannot read kvm."); } } if (kd != NULL) { p = kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes); for (i = 0; i < n_processes; i++) { #if __FreeBSD__ < 5 if (p[i].kp_proc.p_stat == SRUN) #else if (p[i].ki_stat == SRUN) #endif cnt++; } } else return; info.run_procs = cnt; } struct cpu_load_struct { unsigned long load[5]; }; struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} }; long cpu_used, oldtotal, oldused; void update_cpu_usage() { long used, total; long cp_time[CPUSTATES]; size_t len = sizeof(cp_time); if (sysctlbyname("kern.cp_time", &cp_time, &len, NULL, 0) < 0) { (void) fprintf(stderr, "Cannot get kern.cp_time"); } fresh.load[0] = cp_time[CP_USER]; fresh.load[1] = cp_time[CP_NICE]; fresh.load[2] = cp_time[CP_SYS]; fresh.load[3] = cp_time[CP_IDLE]; fresh.load[4] = cp_time[CP_IDLE]; used = fresh.load[0] + fresh.load[1] + fresh.load[2]; total = fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3]; if ((total - oldtotal) != 0) { info.cpu_usage = ((double) (used - oldused)) / (double) (total - oldtotal); } else { info.cpu_usage = 0; } oldused = used; oldtotal = total; } double get_i2c_info(int *fd, int div, char *devtype) { return 0; } void update_load_average() { double v[3]; getloadavg(v, 3); info.loadavg[0] = (float) v[0]; info.loadavg[1] = (float) v[1]; info.loadavg[2] = (float) v[2]; } double get_acpi_temperature(int fd) { int temp; if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) { (void) fprintf(stderr, "Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n"); return 0.0; } return KELVTOC(temp); } void get_battery_stuff(char *buf, unsigned int n, const char *bat) { int battime; if (GETSYSCTL("hw.acpi.battery.time", battime)) (void) fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.time\"\n"); if (battime != -1) snprintf(buf, n, "Discharging, remaining %d:%2.2d", battime / 60, battime % 60); else snprintf(buf, n, "Battery is charging"); } int open_i2c_sensor(const char *dev, const char *type, int n, int *div, char *devtype) { return 0; } int open_acpi_temperature(const char *name) { return 0; } char *get_acpi_ac_adapter(void) { int state; char *acstate = (char *) malloc(100); if (GETSYSCTL("hw.acpi.acline", state)) { (void) fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n"); return "n\\a"; } if (state) strcpy(acstate, "Running on AC Power"); else strcpy(acstate, "Running on battery"); return acstate; } char *get_acpi_fan() { return ""; } char *get_adt746x_cpu() { return ""; } char *get_adt746x_fan() { return ""; } char *get_freq() { #if defined(i386) || defined(__i386__) int i; char *cpuspeed; if ((cpuspeed = (char *) malloc(16)) == NULL) exit(1); i = 0; if ((i = get_cpu_speed()) > 0) { if (i < 1000000) { i += 50; /* for rounding */ snprintf(cpuspeed, 15, "%d.%d MHz", i / 1000, (i / 100) % 10); } else { snprintf(cpuspeed, 15, "%d MHz", i / 1000); } } else { cpuspeed = ""; } return cpuspeed; #else return ""; #endif }