/* -*- mode: c++; c-basic-offset: 4; tab-width: 4; indent-tabs-mode: t -*- * vim: ts=4 sw=4 noet ai cindent syntax=cpp * * Conky, a system monitor, based on torsmo * * Any original torsmo code is licensed under the BSD license * * All code written since the fork of torsmo is licensed under the GPL * * Please see COPYING for details * * Copyright (c) 2005-2010 Brenden Matthews, Philip Kovacs, et. al. * (see AUTHORS) * All rights reserved. * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "conky.h" #include "freebsd.h" #include "logging.h" #include "net_stat.h" #include "text_object.h" #include "top.h" #include "diskio.h" #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) #define KELVTOC(x) ((x - 2732) / 10.0) #define MAXSHOWDEVS 16 #if 0 #define FREEBSD_DEBUG #endif kvm_t *kd; __attribute__((gnu_inline)) inline void proc_find_top(struct process **cpu, struct process **mem, struct process **time); static short cpu_setup = 0; static int getsysctl(const char *name, void *ptr, size_t len) { size_t nlen = len; if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { return -1; } if (nlen != len && errno == ENOMEM) { return -1; } return 0; } struct ifmibdata *data = NULL; size_t len = 0; static int swapmode(unsigned long *retavail, unsigned long *retfree) { int n; unsigned long pagesize = getpagesize(); struct kvm_swap swapary[1]; *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * (pagesize / 1024)) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) { return 0; } *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); n = (int) ((double) swapary[0].ksw_used * 100.0 / (double) swapary[0].ksw_total); return n; } void prepare_update(void) { } int update_uptime(void) { int mib[2] = { CTL_KERN, KERN_BOOTTIME }; struct timeval boottime; time_t now; size_t size = sizeof(boottime); if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1) && (boottime.tv_sec != 0)) { time(&now); info.uptime = now - boottime.tv_sec; } else { fprintf(stderr, "Could not get uptime\n"); info.uptime = 0; } return 0; } int check_mount(struct text_object *obj) { struct statfs *mntbuf; int i, mntsize; if (!obj->data.s) return 0; mntsize = getmntinfo(&mntbuf, MNT_NOWAIT); for (i = mntsize - 1; i >= 0; i--) { if (strcmp(mntbuf[i].f_mntonname, obj->data.s) == 0) { return 1; } } return 0; } int update_meminfo(void) { u_int total_pages, inactive_pages, free_pages; unsigned long swap_avail, swap_free; int pagesize = getpagesize(); if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages)) { fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_page_count\"\n"); } if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages)) { fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_free_count\"\n"); } if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages)) { fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_inactive_count\"\n"); } info.memmax = total_pages * (pagesize >> 10); info.mem = (total_pages - free_pages - inactive_pages) * (pagesize >> 10); info.memwithbuffers = info.mem; info.memeasyfree = info.memfree = info.memmax - info.mem; if ((swapmode(&swap_avail, &swap_free)) >= 0) { info.swapmax = swap_avail; info.swap = (swap_avail - swap_free); info.swapfree = swap_free; } else { info.swapmax = 0; info.swap = 0; info.swapfree = 0; } return 0; } int update_net_stats(void) { struct net_stat *ns; double delta; long long r, t, last_recv, last_trans; struct ifaddrs *ifap, *ifa; struct if_data *ifd; /* get delta */ delta = current_update_time - last_update_time; if (delta <= 0.0001) { return 0; } if (getifaddrs(&ifap) < 0) { return 0; } for (ifa = ifap; ifa; ifa = ifa->ifa_next) { ns = get_net_stat((const char *) ifa->ifa_name, NULL, NULL); if (ifa->ifa_flags & IFF_UP) { struct ifaddrs *iftmp; ns->up = 1; last_recv = ns->recv; last_trans = ns->trans; if (ifa->ifa_addr->sa_family != AF_LINK) { continue; } for (iftmp = ifa->ifa_next; iftmp != NULL && strcmp(ifa->ifa_name, iftmp->ifa_name) == 0; iftmp = iftmp->ifa_next) { if (iftmp->ifa_addr->sa_family == AF_INET) { memcpy(&(ns->addr), iftmp->ifa_addr, iftmp->ifa_addr->sa_len); } } ifd = (struct if_data *) ifa->ifa_data; r = ifd->ifi_ibytes; t = ifd->ifi_obytes; if (r < ns->last_read_recv) { ns->recv += ((long long) 4294967295U - ns->last_read_recv) + r; } else { ns->recv += (r - ns->last_read_recv); } ns->last_read_recv = r; if (t < ns->last_read_trans) { ns->trans += ((long long) 4294967295U - ns->last_read_trans) + t; } else { ns->trans += (t - ns->last_read_trans); } ns->last_read_trans = t; /* calculate speeds */ ns->recv_speed = (ns->recv - last_recv) / delta; ns->trans_speed = (ns->trans - last_trans) / delta; } else { ns->up = 0; } } freeifaddrs(ifap); return 0; } int update_total_processes(void) { int n_processes; kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes); info.procs = n_processes; return 0; } int update_running_processes(void) { struct kinfo_proc *p; int n_processes; int i, cnt = 0; p = kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes); for (i = 0; i < n_processes; i++) { #if (__FreeBSD__ < 5) && (__FreeBSD_kernel__ < 5) if (p[i].kp_proc.p_stat == SRUN) { #else if (p[i].ki_stat == SRUN) { #endif cnt++; } } info.run_procs = cnt; return 0; } void get_cpu_count(void) { int cpu_count = 0; size_t cpu_count_len = sizeof(cpu_count); if (GETSYSCTL("hw.ncpu", cpu_count) == 0) { info.cpu_count = cpu_count; } else { fprintf(stderr, "Cannot get hw.ncpu\n"); info.cpu_count = 0; } info.cpu_usage = (float *) malloc((info.cpu_count + 1) * sizeof(float)); if (info.cpu_usage == NULL) { CRIT_ERR(NULL, NULL, "malloc"); } } struct cpu_info { long oldtotal; long oldused; }; int update_cpu_usage(void) { int i, j = 0; long used, total; long *cp_time = NULL; size_t cp_len; static struct cpu_info *cpu = NULL; unsigned int malloc_cpu_size = 0; extern void* global_cpu; /* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */ if ((cpu_setup == 0) || (!info.cpu_usage)) { get_cpu_count(); cpu_setup = 1; } if (!global_cpu) { malloc_cpu_size = (info.cpu_count + 1) * sizeof(struct cpu_info); cpu = (cpu_info *) malloc(malloc_cpu_size); memset(cpu, 0, malloc_cpu_size); global_cpu = cpu; } /* cpu[0] is overall stats, get it from separate sysctl */ cp_len = CPUSTATES * sizeof(long); cp_time = (long int *) malloc(cp_len); if (sysctlbyname("kern.cp_time", cp_time, &cp_len, NULL, 0) < 0) { fprintf(stderr, "Cannot get kern.cp_time\n"); } total = 0; for (j = 0; j < CPUSTATES; j++) total += cp_time[j]; used = total - cp_time[CP_IDLE]; if ((total - cpu[0].oldtotal) != 0) { info.cpu_usage[0] = ((double) (used - cpu[0].oldused)) / (double) (total - cpu[0].oldtotal); } else { info.cpu_usage[0] = 0; } cpu[0].oldused = used; cpu[0].oldtotal = total; free(cp_time); /* per-core stats */ cp_len = CPUSTATES * sizeof(long) * info.cpu_count; cp_time = (long int *) malloc(cp_len); /* on e.g. i386 SMP we may have more values than actual cpus; this will just drop extra values */ if (sysctlbyname("kern.cp_times", cp_time, &cp_len, NULL, 0) < 0 && errno != ENOMEM) { fprintf(stderr, "Cannot get kern.cp_times\n"); } for (i = 0; i < info.cpu_count; i++) { total = 0; for (j = 0; j < CPUSTATES; j++) total += cp_time[i*CPUSTATES + j]; used = total - cp_time[i*CPUSTATES + CP_IDLE]; if ((total - cpu[i+1].oldtotal) != 0) { info.cpu_usage[i+1] = ((double) (used - cpu[i+1].oldused)) / (double) (total - cpu[i+1].oldtotal); } else { info.cpu_usage[i+1] = 0; } cpu[i+1].oldused = used; cpu[i+1].oldtotal = total; } free(cp_time); return 0; } int update_load_average(void) { double v[3]; getloadavg(v, 3); info.loadavg[0] = (double) v[0]; info.loadavg[1] = (double) v[1]; info.loadavg[2] = (double) v[2]; return 0; } double get_acpi_temperature(int fd) { int temp; (void)fd; if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n"); return 0.0; } return KELVTOC(temp); } static void get_battery_stats(int *battime, int *batcapacity, int *batstate, int *ac) { if (battime && GETSYSCTL("hw.acpi.battery.time", *battime)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.time\"\n"); } if (batcapacity && GETSYSCTL("hw.acpi.battery.life", *batcapacity)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.life\"\n"); } if (batstate && GETSYSCTL("hw.acpi.battery.state", *batstate)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.state\"\n"); } if (ac && GETSYSCTL("hw.acpi.acline", *ac)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n"); } } void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item) { int battime, batcapacity, batstate, ac; (void)bat; get_battery_stats(&battime, &batcapacity, &batstate, &ac); if (batstate != 1 && batstate != 2 && batstate != 0 && batstate != 7) fprintf(stderr, "Unknown battery state %d!\n", batstate); else if (batstate != 1 && ac == 0) fprintf(stderr, "Battery charging while not on AC!\n"); else if (batstate == 1 && ac == 1) fprintf(stderr, "Battery discharing while on AC!\n"); switch (item) { case BATTERY_TIME: if (batstate == 1 && battime != -1) snprintf(buf, n, "%d:%2.2d", battime / 60, battime % 60); break; case BATTERY_STATUS: if (batstate == 1) // Discharging snprintf(buf, n, "remaining %d%%", batcapacity); else snprintf(buf, n, batstate == 2 ? "charging (%d%%)" : (batstate == 7 ? "absent/on AC" : "charged (%d%%)"), batcapacity); break; default: fprintf(stderr, "Unknown requested battery stat %d\n", item); } } static int check_bat(const char *bat) { int batnum, numbatts; char *endptr; if (GETSYSCTL("hw.acpi.battery.units", numbatts)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.units\"\n"); return -1; } if (numbatts <= 0) { fprintf(stderr, "No battery unit detected\n"); return -1; } if (!bat || (batnum = strtol(bat, &endptr, 10)) < 0 || bat == endptr || batnum > numbatts) { fprintf(stderr, "Wrong battery unit %s requested\n", bat ? bat : ""); return -1; } return batnum; } int get_battery_perct(const char *bat) { union acpi_battery_ioctl_arg battio; int batnum, acpifd; int designcap, lastfulcap, batperct; if ((battio.unit = batnum = check_bat(bat)) < 0) return 0; if ((acpifd = open("/dev/acpi", O_RDONLY)) < 0) { fprintf(stderr, "Can't open ACPI device\n"); return 0; } if (ioctl(acpifd, ACPIIO_BATT_GET_BIF, &battio) == -1) { fprintf(stderr, "Unable to get info for battery unit %d\n", batnum); return 0; } close(acpifd); designcap = battio.bif.dcap; lastfulcap = battio.bif.lfcap; batperct = (designcap > 0 && lastfulcap > 0) ? (int) (((float) lastfulcap / designcap) * 100) : 0; return batperct > 100 ? 100 : batperct; } double get_battery_perct_bar(struct text_object *obj) { int batperct = get_battery_perct(obj->data.s); return batperct; } int open_acpi_temperature(const char *name) { (void)name; /* Not applicable for FreeBSD. */ return 0; } void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size, const char *adapter) { int state; (void) adapter; // only linux uses this if (!p_client_buffer || client_buffer_size <= 0) { return; } if (GETSYSCTL("hw.acpi.acline", state)) { fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n"); return; } if (state) { strncpy(p_client_buffer, "Running on AC Power", client_buffer_size); } else { strncpy(p_client_buffer, "Running on battery", client_buffer_size); } } void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) { /* not implemented */ if (p_client_buffer && client_buffer_size > 0) { memset(p_client_buffer, 0, client_buffer_size); } } /* void */ char get_freq(char *p_client_buffer, size_t client_buffer_size, const char *p_format, int divisor, unsigned int cpu) { int freq; char *freq_sysctl; freq_sysctl = (char *) calloc(16, sizeof(char)); if (freq_sysctl == NULL) { exit(-1); } snprintf(freq_sysctl, 16, "dev.cpu.%d.freq", (cpu - 1)); if (!p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0) { return 0; } if (GETSYSCTL(freq_sysctl, freq) == 0) { snprintf(p_client_buffer, client_buffer_size, p_format, (float) freq / divisor); } else { snprintf(p_client_buffer, client_buffer_size, p_format, 0.0f); } free(freq_sysctl); return 1; } int update_top(void) { proc_find_top(info.cpu, info.memu, info.time); return 0; } #if 0 void update_wifi_stats(void) { struct ifreq ifr; /* interface stats */ struct wi_req wireq; struct net_stat *ns; struct ifaddrs *ifap, *ifa; struct ifmediareq ifmr; int s; /* Get iface table */ if (getifaddrs(&ifap) < 0) { return; } for (ifa = ifap; ifa; ifa = ifa->ifa_next) { ns = get_net_stat((const char *) ifa->ifa_name, NULL, NULL); s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP); /* Get media type */ bzero(&ifmr, sizeof(ifmr)); strlcpy(ifmr.ifm_name, ifa->ifa_name, IFNAMSIZ); if (ioctl(s, SIOCGIFMEDIA, (caddr_t) &ifmr) < 0) { close(s); return; } /* We can monitor only wireless interfaces * which are not in hostap mode */ if ((ifmr.ifm_active & IFM_IEEE80211) && !(ifmr.ifm_active & IFM_IEEE80211_HOSTAP)) { /* Get wi status */ bzero(&ifr, sizeof(ifr)); strlcpy(ifr.ifr_name, ifa->ifa_name, IFNAMSIZ); wireq.wi_type = WI_RID_COMMS_QUALITY; wireq.wi_len = WI_MAX_DATALEN; ifr.ifr_data = (void *) &wireq; if (ioctl(s, SIOCGWAVELAN, (caddr_t) &ifr) < 0) { perror("ioctl (getting wi status)"); exit(1); } /* wi_val[0] = quality * wi_val[1] = signal * wi_val[2] = noise */ ns->linkstatus = (int) wireq.wi_val[1]; } cleanup: close(s); } } #endif int update_diskio(void) { int devs_count, num_selected, num_selections, dn; struct device_selection *dev_select = NULL; long select_generation; static struct statinfo statinfo_cur; char device_name[text_buffer_size]; struct diskio_stat *cur; unsigned int reads, writes; unsigned int total_reads = 0, total_writes = 0; memset(&statinfo_cur, 0, sizeof(statinfo_cur)); statinfo_cur.dinfo = (struct devinfo *)calloc(1, sizeof(struct devinfo)); stats.current = stats.current_read = stats.current_write = 0; if (devstat_getdevs(NULL, &statinfo_cur) < 0) { free(statinfo_cur.dinfo); return 0; } devs_count = statinfo_cur.dinfo->numdevs; if (devstat_selectdevs(&dev_select, &num_selected, &num_selections, &select_generation, statinfo_cur.dinfo->generation, statinfo_cur.dinfo->devices, devs_count, NULL, 0, NULL, 0, DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) { for (dn = 0; dn < devs_count; dn++) { int di; struct devstat *dev; di = dev_select[dn].position; dev = &statinfo_cur.dinfo->devices[di]; snprintf(device_name, text_buffer_size, "%s%d", dev_select[dn].device_name, dev_select[dn].unit_number); total_reads += (reads = dev->bytes[DEVSTAT_READ] / 512); total_writes += (writes = dev->bytes[DEVSTAT_WRITE] / 512); for (cur = stats.next; cur; cur = cur->next) { if (cur->dev && !strcmp(device_name, cur->dev)) { update_diskio_values(cur, reads, writes); break; } } } update_diskio_values(&stats, total_reads, total_writes); free(dev_select); } free(statinfo_cur.dinfo); return 0; } /* While topless is obviously better, top is also not bad. */ int comparecpu(const void *a, const void *b) { if (((const struct process *)a)->amount > ((const struct process *)b)->amount) { return -1; } else if (((const struct process *)a)->amount < ((const struct process *)b)->amount) { return 1; } else { return 0; } } int comparemem(const void *a, const void *b) { if (((const struct process *)a)->rss > ((const struct process *)b)->rss) { return -1; } else if (((const struct process *)a)->rss < ((const struct process *)b)->rss) { return 1; } else { return 0; } } int comparetime(const void *va, const void *vb) { struct process *a = (struct process *)va, *b = (struct process *)vb; return b->total_cpu_time - a->total_cpu_time; } __attribute__((gnu_inline)) inline void proc_find_top(struct process **cpu, struct process **mem, struct process **time) { struct kinfo_proc *p; int n_processes; int i, j = 0; struct process *processes; int total_pages; /* we get total pages count again to be sure it is up to date */ if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages) != 0) { CRIT_ERR(NULL, NULL, "Cannot read sysctl \"vm.stats.vm.v_page_count\""); } p = kvm_getprocs(kd, KERN_PROC_PROC, 0, &n_processes); processes = (process *) malloc(n_processes * sizeof(struct process)); for (i = 0; i < n_processes; i++) { if (!((p[i].ki_flag & P_SYSTEM)) && p[i].ki_comm != NULL) { processes[j].pid = p[i].ki_pid; processes[j].name = strndup(p[i].ki_comm, text_buffer_size); processes[j].amount = 100.0 * p[i].ki_pctcpu / FSCALE; processes[j].vsize = p[i].ki_size; processes[j].rss = (p[i].ki_rssize * getpagesize()); /* ki_runtime is in microseconds, total_cpu_time in centiseconds. * Therefore we divide by 10000. */ processes[j].total_cpu_time = p[i].ki_runtime / 10000; j++; } } qsort(processes, j - 1, sizeof(struct process), comparemem); for (i = 0; i < 10 && i < n_processes; i++) { struct process *tmp, *ttmp; tmp = (process *) malloc(sizeof(struct process)); memcpy(tmp, &processes[i], sizeof(struct process)); tmp->name = strndup(processes[i].name, text_buffer_size); ttmp = mem[i]; mem[i] = tmp; if (ttmp != NULL) { free(ttmp->name); free(ttmp); } } qsort(processes, j - 1, sizeof(struct process), comparecpu); for (i = 0; i < 10 && i < n_processes; i++) { struct process *tmp, *ttmp; tmp = (process *) malloc(sizeof(struct process)); memcpy(tmp, &processes[i], sizeof(struct process)); tmp->name = strndup(processes[i].name, text_buffer_size); ttmp = cpu[i]; cpu[i] = tmp; if (ttmp != NULL) { free(ttmp->name); free(ttmp); } } qsort(processes, j - 1, sizeof(struct process), comparetime); for (i = 0; i < 10 && i < n_processes; i++) { struct process *tmp, *ttmp; tmp = (process *) malloc(sizeof(struct process)); memcpy(tmp, &processes[i], sizeof(struct process)); tmp->name = strndup(processes[i].name, text_buffer_size); ttmp = time[i]; time[i] = tmp; if (ttmp != NULL) { free(ttmp->name); free(ttmp); } } #if defined(FREEBSD_DEBUG) printf("=====\nmem\n"); for (i = 0; i < 10; i++) { printf("%d: %s(%d) %ld %ld\n", i, mem[i]->name, mem[i]->pid, mem[i]->vsize, mem[i]->rss); } #endif for (i = 0; i < j; i++) { free(processes[i].name); } free(processes); } void get_battery_short_status(char *buffer, unsigned int n, const char *bat) { get_battery_stuff(buffer, n, bat, BATTERY_STATUS); if (0 == strncmp("charging", buffer, 8)) { buffer[0] = 'C'; memmove(buffer + 1, buffer + 8, n - 8); } else if (0 == strncmp("discharging", buffer, 11)) { buffer[0] = 'D'; memmove(buffer + 1, buffer + 11, n - 11); } else if (0 == strncmp("absent/on AC", buffer, 12)) { buffer[0] = 'A'; memmove(buffer + 1, buffer + 12, n - 12); } } int get_entropy_avail(unsigned int *val) { /* Not applicable for FreeBSD as it uses the yarrow prng. */ (void)val; return 1; } int get_entropy_poolsize(unsigned int *val) { /* Not applicable for FreeBSD as it uses the yarrow prng. */ (void)val; return 1; }