/** freebsd.c * Contains FreeBSD specific stuff * * $Id$ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "conky.h" #define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var)) #define KELVTOC(x) ((x - 2732) / 10.0) #define MAXSHOWDEVS 16 inline void proc_find_top(struct process **cpu, struct process **mem); u_int64_t diskio_prev = 0; static short cpu_setup = 0; static short diskio_setup = 0; static int getsysctl(char *name, void *ptr, size_t len) { size_t nlen = len; if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) { return -1; } if (nlen != len) { return -1; } return 0; } static kvm_t *kd = NULL; struct ifmibdata *data = NULL; size_t len = 0; static int swapmode(int *retavail, int *retfree) { int n; int pagesize = getpagesize(); struct kvm_swap swapary[1]; static int kd_init = 1; if (kd_init) { kd_init = 0; if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL) { (void) fprintf(stderr, "Cannot read kvm."); return -1; } } if (kd == NULL) { return -1; } *retavail = 0; *retfree = 0; #define CONVERT(v) ((quad_t)(v) * pagesize / 1024) n = kvm_getswapinfo(kd, swapary, 1, 0); if (n < 0 || swapary[0].ksw_total == 0) return (0); *retavail = CONVERT(swapary[0].ksw_total); *retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used); n = (int) ((double) swapary[0].ksw_used * 100.0 / (double) swapary[0].ksw_total); return n; } void prepare_update() { } void update_uptime() { int mib[2] = { CTL_KERN, KERN_BOOTTIME }; struct timeval boottime; time_t now; size_t size = sizeof(boottime); if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1) && (boottime.tv_sec != 0)) { time(&now); info.uptime = now - boottime.tv_sec; } else { (void) fprintf(stderr, "Could not get uptime\n"); info.uptime = 0; } } void update_meminfo() { int total_pages, inactive_pages, free_pages; int swap_avail, swap_free; int pagesize = getpagesize(); if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages)) (void) fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_page_count\""); if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages)) (void) fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_free_count\""); if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages)) (void) fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_inactive_count\""); info.memmax = (total_pages * pagesize) >> 10; info.mem = ((total_pages - free_pages - inactive_pages) * pagesize) >> 10; if ((swapmode(&swap_avail, &swap_free)) >= 0) { info.swapmax = swap_avail; info.swap = (swap_avail - swap_free); } else { info.swapmax = 0; info.swap = 0; } } void update_net_stats() { struct net_stat *ns; double delta; long long r, t, last_recv, last_trans; struct ifaddrs *ifap, *ifa; struct if_data *ifd; /* get delta */ delta = current_update_time - last_update_time; if (delta <= 0.0001) return; if (getifaddrs(&ifap) < 0) return; for (ifa = ifap; ifa; ifa = ifa->ifa_next) { ns = get_net_stat((const char *) ifa->ifa_name); if (ifa->ifa_flags & IFF_UP) { last_recv = ns->recv; last_trans = ns->trans; if (ifa->ifa_addr->sa_family != AF_LINK) continue; ifd = (struct if_data *) ifa->ifa_data; r = ifd->ifi_ibytes; t = ifd->ifi_obytes; if (r < ns->last_read_recv) ns->recv += ((long long) 4294967295U - ns->last_read_recv) + r; else ns->recv += (r - ns->last_read_recv); ns->last_read_recv = r; if (t < ns->last_read_trans) ns->trans += ((long long) 4294967295U - ns->last_read_trans) + t; else ns->trans += (t - ns->last_read_trans); ns->last_read_trans = t; /* calculate speeds */ ns->recv_speed = (ns->recv - last_recv) / delta; ns->trans_speed = (ns->trans - last_trans) / delta; } } freeifaddrs(ifap); } void update_total_processes() { int n_processes; static int kd_init = 1; if (kd_init) { kd_init = 0; if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL) { (void) fprintf(stderr, "Cannot read kvm."); return; } } if (kd != NULL) kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes); else return; info.procs = n_processes; } void update_running_processes() { static int kd_init = 1; struct kinfo_proc *p; int n_processes; int i, cnt = 0; if (kd_init) { kd_init = 0; if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL) { (void) fprintf(stderr, "Cannot read kvm."); } } if (kd != NULL) { p = kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes); for (i = 0; i < n_processes; i++) { #if __FreeBSD__ < 5 if (p[i].kp_proc.p_stat == SRUN) #else if (p[i].ki_stat == SRUN) #endif cnt++; } } else return; info.run_procs = cnt; } struct cpu_load_struct { unsigned long load[5]; }; struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} }; long cpu_used, oldtotal, oldused; void get_cpu_count() { int cpu_count = 0; if (GETSYSCTL("hw.ncpu", cpu_count) == 0) info.cpu_count = cpu_count; info.cpu_usage = malloc(info.cpu_count * sizeof(float)); if (info.cpu_usage == NULL) CRIT_ERR("malloc"); } /* XXX: SMP support */ void update_cpu_usage() { long used, total; long cp_time[CPUSTATES]; size_t len = sizeof(cp_time); if (cpu_setup == 0) { get_cpu_count(); cpu_setup = 1; } if (sysctlbyname("kern.cp_time", &cp_time, &len, NULL, 0) < 0) { (void) fprintf(stderr, "Cannot get kern.cp_time"); } fresh.load[0] = cp_time[CP_USER]; fresh.load[1] = cp_time[CP_NICE]; fresh.load[2] = cp_time[CP_SYS]; fresh.load[3] = cp_time[CP_IDLE]; fresh.load[4] = cp_time[CP_IDLE]; used = fresh.load[0] + fresh.load[1] + fresh.load[2]; total = fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3]; if ((total - oldtotal) != 0) { info.cpu_usage[0] = ((double) (used - oldused)) / (double) (total - oldtotal); } else { info.cpu_usage[0] = 0; } oldused = used; oldtotal = total; } double get_i2c_info(int *fd, int arg, char *devtype, char *type) { return 0; } void update_load_average() { double v[3]; getloadavg(v, 3); info.loadavg[0] = (float) v[0]; info.loadavg[1] = (float) v[1]; info.loadavg[2] = (float) v[2]; } double get_acpi_temperature(int fd) { int temp; if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) { (void) fprintf(stderr, "Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n"); return 0.0; } return KELVTOC(temp); } void get_battery_stuff(char *buf, unsigned int n, const char *bat) { int battime; if (GETSYSCTL("hw.acpi.battery.time", battime)) (void) fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.time\"\n"); if (battime != -1) snprintf(buf, n, "Discharging, remaining %d:%2.2d", battime / 60, battime % 60); else snprintf(buf, n, "Battery is charging"); } int open_i2c_sensor(const char *dev, const char *type, int n, int *div, char *devtype) { return 0; } int open_acpi_temperature(const char *name) { return 0; } void get_acpi_ac_adapter( char * p_client_buffer, size_t client_buffer_size ) { int state; if ( !p_client_buffer || client_buffer_size <= 0 ) return; if (GETSYSCTL("hw.acpi.acline", state)) { (void) fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n"); return; } if (state) strncpy( p_client_buffer, "Running on AC Power", client_buffer_size ); else strncpy( p_client_buffer, "Running on battery", client_buffer_size ); return; } void get_acpi_fan( char * p_client_buffer, size_t client_buffer_size ) { if ( !p_client_buffer || client_buffer_size <= 0 ) return; /* not implemented */ memset(p_client_buffer,0,client_buffer_size); return; } void get_adt746x_cpu( char * p_client_buffer, size_t client_buffer_size ) { if ( !p_client_buffer || client_buffer_size <= 0 ) return; /* not implemented */ memset(p_client_buffer,0,client_buffer_size); return; } void get_adt746x_fan( char * p_client_buffer, size_t client_buffer_size ) { if ( !p_client_buffer || client_buffer_size <= 0 ) return; /* not implemented */ memset(p_client_buffer,0,client_buffer_size); return; } /* rdtsc() and get_freq_dynamic() copied from linux.c */ #if defined(__i386) || defined(__x86_64) __inline__ unsigned long long int rdtsc() { unsigned long long int x; __asm__ volatile (".byte 0x0f, 0x31":"=A" (x)); return x; } #endif /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ void get_freq_dynamic( char * p_client_buffer, size_t client_buffer_size, char * p_format, int divisor ) { #if defined(__i386) || defined(__x86_64) struct timezone tz; struct timeval tvstart, tvstop; unsigned long long cycles[2]; /* gotta be 64 bit */ unsigned int microseconds; /* total time taken */ memset(&tz, 0, sizeof(tz)); /* get this function in cached memory */ gettimeofday(&tvstart, &tz); cycles[0] = rdtsc(); gettimeofday(&tvstart, &tz); /* we don't trust that this is any specific length of time */ usleep(100); cycles[1] = rdtsc(); gettimeofday(&tvstop, &tz); microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) + (tvstop.tv_usec - tvstart.tv_usec); snprintf( p_client_buffer, client_buffer_size, p_format, (float)((cycles[1] - cycles[0]) / microseconds) / divisor ); return; #else get_freq( p_client_buffer, client_buffer_size, p_format, divisor ); return; #endif } /* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */ void get_freq( char * p_client_buffer, size_t client_buffer_size, char * p_format, int divisor ) { int freq; if ( !p_client_buffer || client_buffer_size <= 0 || !p_format || divisor <= 0 ) return; if (GETSYSCTL("dev.cpu.0.freq", freq) == 0) { snprintf( p_client_buffer, client_buffer_size, p_format, freq/divisor ); } else { snprintf( p_client_buffer, client_buffer_size, p_format, (float)0 ); } return; } void update_top() { proc_find_top(info.cpu, info.memu); } void update_wifi_stats() { /* XXX */ } void update_diskio() { int devs_count, num_selected, num_selections; struct device_selection *dev_select = NULL; long select_generation; int dn; static struct statinfo statinfo_cur; u_int64_t diskio_current = 0; bzero(&statinfo_cur, sizeof(statinfo_cur)); statinfo_cur.dinfo = (struct devinfo *)malloc(sizeof(struct devinfo)); bzero(statinfo_cur.dinfo, sizeof(struct devinfo)); if (devstat_getdevs(NULL, &statinfo_cur) < 0) return; devs_count = statinfo_cur.dinfo->numdevs; if (devstat_selectdevs(&dev_select, &num_selected, &num_selections, &select_generation, statinfo_cur.dinfo->generation, statinfo_cur.dinfo->devices, devs_count, NULL, 0, NULL, 0, DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) { for (dn = 0; dn < devs_count; ++dn) { int di; struct devstat *dev; di = dev_select[dn].position; dev = &statinfo_cur.dinfo->devices[di]; diskio_current += dev->bytes[DEVSTAT_READ] + dev->bytes[DEVSTAT_WRITE]; } free(dev_select); } /* * Since we return (diskio_total_current - diskio_total_old), first * frame will be way too high (it will be equal to diskio_total_current, i.e. * all disk I/O since boot). That's why it is better to return 0 first time; */ if (diskio_setup == 0) { diskio_setup = 1; diskio_value = 0; } else diskio_value = (unsigned int)((diskio_current - diskio_prev)/1024); diskio_prev = diskio_current; free(statinfo_cur.dinfo); } /* * While topless is obviously better, top is also not bad. */ int comparecpu(const void * a, const void * b) { if (((struct process *)a)->amount > ((struct process *)b)->amount) return -1; if (((struct process *)a)->amount < ((struct process *)b)->amount) return 1; return 0; } int comparemem(const void * a, const void * b) { if (((struct process *)a)->totalmem > ((struct process *)b)->totalmem) return -1; if (((struct process *)a)->totalmem < ((struct process *)b)->totalmem) return 1; return 0; } inline void proc_find_top(struct process **cpu, struct process **mem) { static int kd_init = 1; struct kinfo_proc *p; int n_processes; int i, j = 0; struct process *processes; if (kd_init) { kd_init = 0; if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null", O_RDONLY, "kvm_open")) == NULL) { (void) fprintf(stderr, "Cannot read kvm."); } } if (kd != NULL) { int total_pages; /* we get total pages count again to be sure it is up to date */ if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages) != 0) CRIT_ERR("Cannot read sysctl \"vm.stats.vm.v_page_count\""); p = kvm_getprocs(kd, KERN_PROC_PROC, 0, &n_processes); processes = malloc(n_processes * sizeof(struct process)); for (i = 0; i < n_processes; i++) { if (!((p[i].ki_flag & P_SYSTEM)) && p[i].ki_comm != NULL) { processes[j].pid = p[i].ki_pid; processes[j].name = strdup(p[i].ki_comm); processes[j].amount = 100.0 * p[i].ki_pctcpu / FSCALE; processes[j].totalmem = (float)(p[i].ki_rssize / (float)total_pages) * 100.0; j++; } } qsort(processes, j, sizeof(struct process), comparemem); for (i = 0; i < 10; mem[i] = &processes[i], i++); qsort(processes, j, sizeof(struct process), comparecpu); for (i = 0; i < 10; cpu[i] = &processes[i], i++); free(processes); } else return; } #if defined(i386) || defined(__i386__) #define APMDEV "/dev/apm" #define APM_UNKNOWN 255 int apm_getinfo(int fd, apm_info_t aip) { if (ioctl(fd, APMIO_GETINFO, aip) == -1) return -1; return 0; } char *get_apm_adapter() { int fd; struct apm_info info; fd = open(APMDEV, O_RDONLY); if(fd < 0) return "ERR"; if(apm_getinfo(fd, &info) != 0 ) { close(fd); return "ERR"; } close(fd); switch(info.ai_acline) { case 0: return "off-line"; break; case 1: if(info.ai_batt_stat == 3) return "charging"; else return "on-line"; break; default: return "unknown"; break; } } char *get_apm_battery_life() { int fd; u_int batt_life; struct apm_info info; char *out; out = (char *)calloc(16, sizeof(char)); fd = open(APMDEV, O_RDONLY); if(fd < 0) { strncpy(out, "ERR", 16); return out; } if(apm_getinfo(fd, &info) != 0 ) { close(fd); strncpy(out, "ERR", 16); return out; } close(fd); batt_life = info.ai_batt_life; if (batt_life == APM_UNKNOWN) strncpy(out, "unknown", 16); else if (batt_life <= 100) { snprintf(out, 20,"%d%%", batt_life); return out; } else strncpy(out, "ERR", 16); return out; } char *get_apm_battery_time() { int fd; int batt_time; int h, m, s; struct apm_info info; char *out; out = (char *)calloc(16, sizeof(char)); fd = open(APMDEV, O_RDONLY); if(fd < 0) { strncpy(out, "ERR", 16); return out; } if(apm_getinfo(fd, &info) != 0 ) { close(fd); strncpy(out, "ERR", 16); return out; } close(fd); batt_time = info.ai_batt_time; if (batt_time == -1) strncpy(out, "unknown", 16); else { h = batt_time; s = h % 60; h /= 60; m = h % 60; h /= 60; snprintf(out, 16, "%2d:%02d:%02d", h, m, s); } return out; } #endif