/* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2004, Hannu Saransaari and Lauri Hakkarainen
* Copyright (c) 2007 Toni Spets
* Copyright (c) 2005-2007 Brenden Matthews, Philip Kovacs, et. al.
* (see AUTHORS)
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
* $Id$ */
#include "conky.h"
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#ifndef HAVE_CLOCK_GETTIME
#include
#endif
#include
#include
// #include
#include
#include "top.h"
#include
#include
#include
#include
#include
#include
#include
#include
#ifdef HAVE_IWLIB
#include
#endif
#define SHORTSTAT_TEMPL "%*s %llu %llu %llu"
#define LONGSTAT_TEMPL "%*s %llu %llu %llu "
static int show_nice_processes;
/* This flag tells the linux routines to use the /proc system where possible,
* even if other api's are available, e.g. sysinfo() or getloadavg().
* the reason for this is to allow for /proc-based distributed monitoring.
* using a flag in this manner creates less confusing code. */
static int prefer_proc = 0;
void prepare_update()
{
}
void update_uptime()
{
#ifdef HAVE_SYSINFO
if (!prefer_proc) {
struct sysinfo s_info;
sysinfo(&s_info);
info.uptime = (double) s_info.uptime;
} else
#endif
{
static int rep = 0;
FILE *fp;
if (!(fp = open_file("/proc/uptime", &rep))) {
info.uptime = 0.0;
return;
}
fscanf(fp, "%lf", &info.uptime);
fclose(fp);
}
info.mask |= (1 << INFO_UPTIME);
}
int check_mount(char *s)
{
int ret = 0;
FILE *mtab = fopen("/etc/mtab", "r");
if (mtab) {
char buf1[256], buf2[128];
while (fgets(buf1, 256, mtab)) {
sscanf(buf1, "%*s %128s", buf2);
if (!strcmp(s, buf2)) {
ret = 1;
break;
}
}
fclose(mtab);
} else {
ERR("Could not open mtab");
}
return ret;
}
/* these things are also in sysinfo except Buffers:
* (that's why I'm reading them from proc) */
void update_meminfo()
{
FILE *meminfo_fp;
static int rep = 0;
/* unsigned int a; */
char buf[256];
info.mem = info.memmax = info.swap = info.swapmax = info.bufmem =
info.buffers = info.cached = 0;
if (!(meminfo_fp = open_file("/proc/meminfo", &rep))) {
return;
}
while (!feof(meminfo_fp)) {
if (fgets(buf, 255, meminfo_fp) == NULL) {
break;
}
if (strncmp(buf, "MemTotal:", 9) == 0) {
sscanf(buf, "%*s %Lu", &info.memmax);
} else if (strncmp(buf, "MemFree:", 8) == 0) {
sscanf(buf, "%*s %Lu", &info.mem);
} else if (strncmp(buf, "SwapTotal:", 10) == 0) {
sscanf(buf, "%*s %Lu", &info.swapmax);
} else if (strncmp(buf, "SwapFree:", 9) == 0) {
sscanf(buf, "%*s %Lu", &info.swap);
} else if (strncmp(buf, "Buffers:", 8) == 0) {
sscanf(buf, "%*s %Lu", &info.buffers);
} else if (strncmp(buf, "Cached:", 7) == 0) {
sscanf(buf, "%*s %Lu", &info.cached);
}
}
info.mem = info.memmax - info.mem;
info.swap = info.swapmax - info.swap;
info.bufmem = info.cached + info.buffers;
info.mask |= (1 << INFO_MEM) | (1 << INFO_BUFFERS);
fclose(meminfo_fp);
}
int get_laptop_mode()
{
FILE *fp;
int val = -1;
if ((fp = fopen("/proc/sys/vm/laptop_mode", "r")) != NULL)
fscanf(fp, "%d\n", &val);
return val;
}
int interface_up(const char *dev)
{
int fd;
struct ifreq ifr;
if((fd = socket(PF_INET, SOCK_DGRAM, 0)) < 0) {
CRIT_ERR("could not create sockfd");
return 0;
}
strncpy(ifr.ifr_name, dev, IFNAMSIZ);
if(ioctl(fd, SIOCGIFFLAGS, &ifr)) {
/* if device does not exist, treat like not up */
if (errno != ENODEV)
perror("SIOCGIFFLAGS");
} else {
close(fd);
return (ifr.ifr_flags & IFF_UP);
}
close(fd);
return 0;
}
#define COND_FREE(x) if(x) free(x); x = 0
#define SAVE_SET_STRING(x, y) \
if (x && strcmp((char *)x, (char *)y)) { \
free(x); \
x = strdup("multiple"); \
} else if (!x) { \
x = strdup(y); \
}
void update_gateway_info()
{
FILE *fp;
struct in_addr ina;
char iface[64];
unsigned long dest, gate, mask;
unsigned int flags;
short ref, use, metric, mtu, win, irtt;
struct gateway_info *gw_info = &info.gw_info;
COND_FREE(gw_info->iface);
COND_FREE(gw_info->ip);
gw_info->count = 0;
if ((fp = fopen("/proc/net/route", "r")) == NULL) {
perror("fopen()");
goto FAIL;
}
if (fscanf(fp, "%*[^\n]\n") == EOF) {
perror("fscanf()");
goto CLOSE_FAIL;
}
while (!feof(fp)) {
// Iface Destination Gateway Flags RefCnt Use Metric Mask MTU Window IRTT
if(fscanf(fp, "%63s %lx %lx %x %hd %hd %hd %lx %hd %hd %hd\n",
iface, &dest, &gate, &flags, &ref, &use,
&metric, &mask, &mtu, &win, &irtt) != 11) {
perror("fscanf()");
goto CLOSE_FAIL;
}
if (flags & RTF_GATEWAY && dest == 0 && mask == 0) {
gw_info->count++;
SAVE_SET_STRING(gw_info->iface, iface)
ina.s_addr = gate;
SAVE_SET_STRING(gw_info->ip, inet_ntoa(ina))
}
}
fclose(fp);
return;
CLOSE_FAIL:
fclose(fp);
FAIL:
info.gw_info.iface = info.gw_info.ip = strdup("failed");
return;
}
inline void update_net_stats()
{
FILE *net_dev_fp;
static int rep = 0;
// FIXME: arbitrary size chosen to keep code simple.
int i, i2;
unsigned int curtmp1, curtmp2;
unsigned int k;
struct ifconf conf;
char buf[256];
double delta;
#ifdef HAVE_IWLIB
// wireless info variables
int skfd, has_bitrate = 0;
struct wireless_info *winfo;
struct iwreq wrq;
#endif
/* get delta */
delta = current_update_time - last_update_time;
if (delta <= 0.0001) {
return;
}
/* open file and ignore first two lines */
if (!(net_dev_fp = open_file("/proc/net/dev", &rep))) {
clear_net_stats();
return;
}
fgets(buf, 255, net_dev_fp); /* garbage */
fgets(buf, 255, net_dev_fp); /* garbage (field names) */
/* read each interface */
for (i2 = 0; i2 < 16; i2++) {
struct net_stat *ns;
char *s, *p;
char temp_addr[17];
long long r, t, last_recv, last_trans;
if (fgets(buf, 255, net_dev_fp) == NULL) {
break;
}
p = buf;
while (isspace((int) *p)) {
p++;
}
s = p;
while (*p && *p != ':') {
p++;
}
if (*p == '\0') {
continue;
}
*p = '\0';
p++;
ns = get_net_stat(s);
ns->up = 1;
memset(&(ns->addr.sa_data), 0, 14);
if(NULL == ns->addrs)
ns->addrs = (char*) malloc(17 * 16);
if(NULL != ns->addrs)
memset(ns->addrs, 0, 17 * 16); /* Up to 17 chars per ip, max 16 interfaces. Nasty memory usage... */
last_recv = ns->recv;
last_trans = ns->trans;
/* bytes packets errs drop fifo frame compressed multicast|bytes ... */
sscanf(p, "%Ld %*d %*d %*d %*d %*d %*d %*d %Ld",
&r, &t);
/* if recv or trans is less than last time, an overflow happened */
if (r < ns->last_read_recv) {
last_recv = 0;
} else {
ns->recv += (r - ns->last_read_recv);
}
ns->last_read_recv = r;
if (t < ns->last_read_trans) {
last_trans = 0;
} else {
ns->trans += (t - ns->last_read_trans);
}
ns->last_read_trans = t;
/*** ip addr patch ***/
i = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
conf.ifc_buf = malloc(sizeof(struct ifreq) * 16);
conf.ifc_len = sizeof(struct ifreq) * 16;
ioctl((long) i, SIOCGIFCONF, &conf);
for (k = 0; k < conf.ifc_len / sizeof(struct ifreq); k++) {
struct net_stat *ns;
ns = get_net_stat(
((struct ifreq *) conf.ifc_buf)[k].ifr_ifrn.ifrn_name);
ns->addr = ((struct ifreq *) conf.ifc_buf)[k].ifr_ifru.ifru_addr;
if(NULL != ns->addrs)
{
sprintf(temp_addr, "%u.%u.%u.%u, ",
ns->addr.sa_data[2] & 255,
ns->addr.sa_data[3] & 255,
ns->addr.sa_data[4] & 255,
ns->addr.sa_data[5] & 255);
if(NULL == strstr(ns->addrs, temp_addr))
strncpy(ns->addrs + strlen(ns->addrs), temp_addr, 17);
}
}
close((long) i);
free(conf.ifc_buf);
/*** end ip addr patch ***/
/* calculate speeds */
ns->net_rec[0] = (ns->recv - last_recv) / delta;
ns->net_trans[0] = (ns->trans - last_trans) / delta;
curtmp1 = 0;
curtmp2 = 0;
// get an average
for (i = 0; (unsigned) i < info.net_avg_samples; i++) {
curtmp1 += ns->net_rec[i];
curtmp2 += ns->net_trans[i];
}
if (curtmp1 == 0) {
curtmp1 = 1;
}
if (curtmp2 == 0) {
curtmp2 = 1;
}
ns->recv_speed = curtmp1 / (double) info.net_avg_samples;
ns->trans_speed = curtmp2 / (double) info.net_avg_samples;
if (info.net_avg_samples > 1) {
for (i = info.net_avg_samples; i > 1; i--) {
ns->net_rec[i - 1] = ns->net_rec[i - 2];
ns->net_trans[i - 1] = ns->net_trans[i - 2];
}
}
#ifdef HAVE_IWLIB
/* update wireless info */
winfo = malloc(sizeof(struct wireless_info));
memset(winfo, 0, sizeof(struct wireless_info));
skfd = iw_sockets_open();
if (iw_get_basic_config(skfd, s, &(winfo->b)) > -1) {
// set present winfo variables
if (iw_get_stats(skfd, s, &(winfo->stats),
&winfo->range, winfo->has_range) >= 0) {
winfo->has_stats = 1;
}
if (iw_get_range_info(skfd, s, &(winfo->range)) >= 0) {
winfo->has_range = 1;
}
if (iw_get_ext(skfd, s, SIOCGIWAP, &wrq) >= 0) {
winfo->has_ap_addr = 1;
memcpy(&(winfo->ap_addr), &(wrq.u.ap_addr), sizeof(sockaddr));
}
// get bitrate
if (iw_get_ext(skfd, s, SIOCGIWRATE, &wrq) >= 0) {
memcpy(&(winfo->bitrate), &(wrq.u.bitrate), sizeof(iwparam));
iw_print_bitrate(ns->bitrate, 16, winfo->bitrate.value);
has_bitrate = 1;
}
// get link quality
if (winfo->has_range && winfo->has_stats
&& ((winfo->stats.qual.level != 0)
|| (winfo->stats.qual.updated & IW_QUAL_DBM))) {
if (!(winfo->stats.qual.updated & IW_QUAL_QUAL_INVALID)) {
ns->link_qual = winfo->stats.qual.qual;
ns->link_qual_max = winfo->range.max_qual.qual;
}
}
// get ap mac
if (winfo->has_ap_addr) {
iw_sawap_ntop(&winfo->ap_addr, ns->ap);
}
// get essid
if (winfo->b.has_essid) {
if (winfo->b.essid_on) {
snprintf(ns->essid, 32, "%s", winfo->b.essid);
} else {
snprintf(ns->essid, 32, "off/any");
}
}
snprintf(ns->mode, 16, "%s", iw_operation_mode[winfo->b.mode]);
}
iw_sockets_close(skfd);
free(winfo);
#endif
}
fclose(net_dev_fp);
info.mask |= (1 << INFO_NET);
}
int result;
void update_total_processes()
{
#ifdef HAVE_SYSINFO
if (!prefer_proc) {
struct sysinfo s_info;
sysinfo(&s_info);
info.procs = s_info.procs;
} else
#endif
{
static int rep = 0;
FILE *fp;
if (!(fp = open_file("/proc/loadavg", &rep))) {
info.procs = 0;
return;
}
fscanf(fp, "%*f %*f %*f %*d/%hd", &info.procs);
fclose(fp);
}
info.mask |= (1 << INFO_PROCS);
}
#define CPU_SAMPLE_COUNT 15
struct cpu_info {
unsigned long long cpu_user;
unsigned long long cpu_system;
unsigned long long cpu_nice;
unsigned long long cpu_idle;
unsigned long long cpu_iowait;
unsigned long long cpu_irq;
unsigned long long cpu_softirq;
unsigned long long cpu_steal;
unsigned long long cpu_total;
unsigned long long cpu_active_total;
unsigned long long cpu_last_total;
unsigned long long cpu_last_active_total;
double cpu_val[CPU_SAMPLE_COUNT];
};
static short cpu_setup = 0;
/* Determine if this kernel gives us "extended" statistics information in
* /proc/stat.
* Kernels around 2.5 and earlier only reported user, system, nice, and
* idle values in proc stat.
* Kernels around 2.6 and greater report these PLUS iowait, irq, softirq,
* and steal */
void determine_longstat(char *buf)
{
unsigned long long iowait = 0;
KFLAG_SETOFF(KFLAG_IS_LONGSTAT);
/* scanf will either return -1 or 1 because there is only 1 assignment */
if (sscanf(buf, "%*s %*d %*d %*d %*d %llu", &iowait) > 0) {
KFLAG_SETON(KFLAG_IS_LONGSTAT);
}
}
void get_cpu_count()
{
FILE *stat_fp;
static int rep = 0;
if (info.cpu_usage) {
return;
}
char buf[256];
if (!(stat_fp = open_file("/proc/stat", &rep))) {
return;
}
info.cpu_count = 0;
while (!feof(stat_fp)) {
if (fgets(buf, 255, stat_fp) == NULL) {
break;
}
if (strncmp(buf, "cpu", 3) == 0 && isdigit(buf[3])) {
if (info.cpu_count == 0) {
determine_longstat(buf);
}
info.cpu_count++;
}
}
info.cpu_usage = malloc((info.cpu_count + 1) * sizeof(float));
fclose(stat_fp);
}
#define TMPL_LONGSTAT "%*s %llu %llu %llu %llu %llu %llu %llu %llu"
#define TMPL_SHORTSTAT "%*s %llu %llu %llu %llu"
inline static void update_stat()
{
FILE *stat_fp;
static int rep = 0;
static struct cpu_info *cpu = NULL;
char buf[256];
unsigned int i;
unsigned int index;
double curtmp;
char *stat_template = NULL;
unsigned int malloc_cpu_size = 0;
/* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */
if (!cpu_setup || !info.cpu_usage) {
get_cpu_count();
cpu_setup = 1;
}
if (!stat_template) {
stat_template =
KFLAG_ISSET(KFLAG_IS_LONGSTAT) ? TMPL_LONGSTAT : TMPL_SHORTSTAT;
}
if (!cpu) {
malloc_cpu_size = (info.cpu_count + 1) * sizeof(struct cpu_info);
cpu = malloc(malloc_cpu_size);
memset(cpu, 0, malloc_cpu_size);
}
if (!(stat_fp = open_file("/proc/stat", &rep))) {
info.run_procs = 0;
if (info.cpu_usage) {
memset(info.cpu_usage, 0, info.cpu_count * sizeof(float));
}
return;
}
index = 0;
while (!feof(stat_fp)) {
if (fgets(buf, 255, stat_fp) == NULL) {
break;
}
if (strncmp(buf, "procs_running ", 14) == 0) {
sscanf(buf, "%*s %hu", &info.run_procs);
info.mask |= (1 << INFO_RUN_PROCS);
} else if (strncmp(buf, "cpu", 3) == 0) {
index = isdigit(buf[3]) ? ((int) buf[3]) - 0x2F : 0;
sscanf(buf, stat_template, &(cpu[index].cpu_user),
&(cpu[index].cpu_nice), &(cpu[index].cpu_system),
&(cpu[index].cpu_idle), &(cpu[index].cpu_iowait),
&(cpu[index].cpu_irq), &(cpu[index].cpu_softirq),
&(cpu[index].cpu_steal));
cpu[index].cpu_total = cpu[index].cpu_user + cpu[index].cpu_nice +
cpu[index].cpu_system + cpu[index].cpu_idle +
cpu[index].cpu_iowait + cpu[index].cpu_irq +
cpu[index].cpu_softirq + cpu[index].cpu_steal;
cpu[index].cpu_active_total = cpu[index].cpu_total -
(cpu[index].cpu_idle + cpu[index].cpu_iowait);
info.mask |= (1 << INFO_CPU);
double delta = current_update_time - last_update_time;
if (delta <= 0.001) {
break;
}
cpu[index].cpu_val[0] = (cpu[index].cpu_active_total -
cpu[index].cpu_last_active_total) /
(float) (cpu[index].cpu_total - cpu[index].cpu_last_total);
curtmp = 0;
for (i = 0; i < info.cpu_avg_samples; i++) {
curtmp += cpu[index].cpu_val[i];
}
/* TESTING -- I've removed this, because I don't think it is right.
* You shouldn't divide by the cpu count here ...
* removing for testing */
/* if (index == 0) {
info.cpu_usage[index] = curtmp / info.cpu_avg_samples /
info.cpu_count;
} else {
info.cpu_usage[index] = curtmp / info.cpu_avg_samples;
} */
/* TESTING -- this line replaces the prev. "suspect" if/else */
info.cpu_usage[index] = curtmp / info.cpu_avg_samples;
cpu[index].cpu_last_total = cpu[index].cpu_total;
cpu[index].cpu_last_active_total = cpu[index].cpu_active_total;
for (i = info.cpu_avg_samples - 1; i > 0; i--) {
cpu[index].cpu_val[i] = cpu[index].cpu_val[i - 1];
}
}
}
fclose(stat_fp);
}
void update_running_processes()
{
update_stat();
}
void update_cpu_usage()
{
update_stat();
}
void update_load_average()
{
#ifdef HAVE_GETLOADAVG
if (!prefer_proc) {
double v[3];
getloadavg(v, 3);
info.loadavg[0] = (float) v[0];
info.loadavg[1] = (float) v[1];
info.loadavg[2] = (float) v[2];
} else
#endif
{
static int rep = 0;
FILE *fp;
if (!(fp = open_file("/proc/loadavg", &rep))) {
info.loadavg[0] = info.loadavg[1] = info.loadavg[2] = 0.0;
return;
}
fscanf(fp, "%f %f %f", &info.loadavg[0], &info.loadavg[1],
&info.loadavg[2]);
fclose(fp);
}
info.mask |= (1 << INFO_LOADAVG);
}
#define PROC_I8K "/proc/i8k"
#define I8K_DELIM " "
static char *i8k_procbuf = NULL;
void update_i8k()
{
FILE *fp;
if (!i8k_procbuf) {
i8k_procbuf = (char *) malloc(128 * sizeof(char));
}
if ((fp = fopen(PROC_I8K, "r")) == NULL) {
CRIT_ERR("/proc/i8k doesn't exist! use insmod to make sure the kernel "
"driver is loaded...");
}
memset(&i8k_procbuf[0], 0, 128);
if (fread(&i8k_procbuf[0], sizeof(char), 128, fp) == 0) {
ERR("something wrong with /proc/i8k...");
}
fclose(fp);
i8k.version = strtok(&i8k_procbuf[0], I8K_DELIM);
i8k.bios = strtok(NULL, I8K_DELIM);
i8k.serial = strtok(NULL, I8K_DELIM);
i8k.cpu_temp = strtok(NULL, I8K_DELIM);
i8k.left_fan_status = strtok(NULL, I8K_DELIM);
i8k.right_fan_status = strtok(NULL, I8K_DELIM);
i8k.left_fan_rpm = strtok(NULL, I8K_DELIM);
i8k.right_fan_rpm = strtok(NULL, I8K_DELIM);
i8k.ac_status = strtok(NULL, I8K_DELIM);
i8k.buttons_status = strtok(NULL, I8K_DELIM);
}
/***********************************************************/
/***********************************************************/
/***********************************************************/
static int no_dots(const struct dirent *d)
{
if (d->d_name[0] == '.') {
return 0;
}
return 1;
}
static int get_first_file_in_a_directory(const char *dir, char *s, int *rep)
{
struct dirent **namelist;
int i, n;
n = scandir(dir, &namelist, no_dots, alphasort);
if (n < 0) {
if (!rep || !*rep) {
ERR("scandir for %s: %s", dir, strerror(errno));
if (rep) {
*rep = 1;
}
}
return 0;
} else {
if (n == 0) {
return 0;
}
strncpy(s, namelist[0]->d_name, 255);
s[255] = '\0';
for (i = 0; i < n; i++) {
free(namelist[i]);
}
free(namelist);
return 1;
}
}
int open_sysfs_sensor(const char *dir, const char *dev, const char *type, int n,
int *div, char *devtype)
{
char path[256];
char buf[256];
int fd;
int divfd;
memset(buf, 0, sizeof(buf));
/* if device is NULL or *, get first */
if (dev == NULL || strcmp(dev, "*") == 0) {
static int rep = 0;
if (!get_first_file_in_a_directory(dir, buf, &rep)) {
return -1;
}
dev = buf;
}
if (strcmp(dir, "/sys/class/hwmon/") == 0) {
if (*buf) {
/* buf holds result from get_first_file_in_a_directory() above,
* e.g. "hwmon0" -- append "/device" */
strcat(buf, "/device");
} else {
/* dev holds device number N as a string,
* e.g. "0", -- convert to "hwmon0/device" */
sprintf(buf, "hwmon%s/device", dev);
dev = buf;
}
}
/* change vol to in */
if (strcmp(type, "vol") == 0) {
type = "in";
}
if (strcmp(type, "tempf") == 0) {
snprintf(path, 255, "%s%s/%s%d_input", dir, dev, "temp", n);
} else {
snprintf(path, 255, "%s%s/%s%d_input", dir, dev, type, n);
}
strncpy(devtype, path, 255);
/* open file */
fd = open(path, O_RDONLY);
if (fd < 0) {
CRIT_ERR("can't open '%s': %s\nplease check your device or remove this "
"var from Conky", path, strerror(errno));
}
if (strcmp(type, "in") == 0 || strcmp(type, "temp") == 0
|| strcmp(type, "tempf") == 0) {
*div = 1;
} else {
*div = 0;
}
/* fan does not use *_div as a read divisor */
if (strcmp("fan", type) == 0) {
return fd;
}
/* test if *_div file exist, open it and use it as divisor */
if (strcmp(type, "tempf") == 0) {
snprintf(path, 255, "%s%s/%s%d_div", dir, "one", "two", n);
} else {
snprintf(path, 255, "%s%s/%s%d_div", dir, dev, type, n);
}
divfd = open(path, O_RDONLY);
if (divfd > 0) {
/* read integer */
char divbuf[64];
int divn;
divn = read(divfd, divbuf, 63);
/* should read until n == 0 but I doubt that kernel will give these
* in multiple pieces. :) */
if (divn < 0) {
ERR("open_sysfs_sensor(): can't read from sysfs");
} else {
divbuf[divn] = '\0';
*div = atoi(divbuf);
}
}
close(divfd);
return fd;
}
double get_sysfs_info(int *fd, int div, char *devtype, char *type)
{
int val = 0;
if (*fd <= 0) {
return 0;
}
lseek(*fd, 0, SEEK_SET);
/* read integer */
{
char buf[64];
int n;
n = read(*fd, buf, 63);
/* should read until n == 0 but I doubt that kernel will give these
* in multiple pieces. :) */
if (n < 0) {
ERR("get_sysfs_info(): read from %s failed\n", devtype);
} else {
buf[n] = '\0';
val = atoi(buf);
}
}
close(*fd);
/* open file */
*fd = open(devtype, O_RDONLY);
if (*fd < 0) {
ERR("can't open '%s': %s", devtype, strerror(errno));
}
/* My dirty hack for computing CPU value
* Filedil, from forums.gentoo.org */
/* if (strstr(devtype, "temp1_input") != NULL) {
return -15.096 + 1.4893 * (val / 1000.0);
} */
/* divide voltage and temperature by 1000 */
/* or if any other divisor is given, use that */
if (strcmp(type, "tempf") == 0) {
if (div > 1) {
return ((val / div + 40) * 9.0 / 5) - 40;
} else if (div) {
return ((val / 1000.0 + 40) * 9.0 / 5) - 40;
} else {
return ((val + 40) * 9.0 / 5) - 40;
}
} else {
if (div > 1) {
return val / div;
} else if (div) {
return val / 1000.0;
} else {
return val;
}
}
}
/* Prior to kernel version 2.6.12, the CPU fan speed was available in
* ADT746X_FAN_OLD, whereas later kernel versions provide this information in
* ADT746X_FAN. */
#define ADT746X_FAN "/sys/devices/temperatures/sensor1_fan_speed"
#define ADT746X_FAN_OLD "/sys/devices/temperatures/cpu_fan_speed"
void get_adt746x_fan(char *p_client_buffer, size_t client_buffer_size)
{
static int rep = 0;
char adt746x_fan_state[64];
FILE *fp;
if (!p_client_buffer || client_buffer_size <= 0) {
return;
}
if ((fp = open_file(ADT746X_FAN, &rep)) == NULL
&& (fp = open_file(ADT746X_FAN_OLD, &rep)) == NULL) {
sprintf(adt746x_fan_state, "adt746x not found");
} else {
fgets(adt746x_fan_state, sizeof(adt746x_fan_state), fp);
adt746x_fan_state[strlen(adt746x_fan_state) - 1] = 0;
fclose(fp);
}
snprintf(p_client_buffer, client_buffer_size, "%s", adt746x_fan_state);
}
/* Prior to kernel version 2.6.12, the CPU temperature was found in
* ADT746X_CPU_OLD, whereas later kernel versions provide this information in
* ADT746X_CPU. */
#define ADT746X_CPU "/sys/devices/temperatures/sensor1_temperature"
#define ADT746X_CPU_OLD "/sys/devices/temperatures/cpu_temperature"
void get_adt746x_cpu(char *p_client_buffer, size_t client_buffer_size)
{
static int rep = 0;
char adt746x_cpu_state[64];
FILE *fp;
if (!p_client_buffer || client_buffer_size <= 0) {
return;
}
if ((fp = open_file(ADT746X_CPU, &rep)) == NULL
&& (fp = open_file(ADT746X_CPU_OLD, &rep)) == NULL) {
sprintf(adt746x_cpu_state, "adt746x not found");
} else {
fscanf(fp, "%2s", adt746x_cpu_state);
fclose(fp);
}
snprintf(p_client_buffer, client_buffer_size, "%s", adt746x_cpu_state);
}
/* Thanks to "Walt Nelson" */
/***********************************************************************/
/* This file is part of x86info.
* (C) 2001 Dave Jones.
*
* Licensed under the terms of the GNU GPL License version 2.
*
* Estimate CPU MHz routine by Andrea Arcangeli
* Small changes by David Sterba */
#if defined(__i386) || defined(__x86_64)
__inline__ unsigned long long int rdtsc()
{
unsigned long long int x;
__asm__ volatile(".byte 0x0f, 0x31":"=A" (x));
return x;
}
#endif
/* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
void get_freq_dynamic(char *p_client_buffer, size_t client_buffer_size,
char *p_format, int divisor)
{
#if defined(__i386) || defined(__x86_64)
struct timezone tz;
struct timeval tvstart, tvstop;
unsigned long long cycles[2]; /* gotta be 64 bit */
unsigned int microseconds; /* total time taken */
if (!p_client_buffer || client_buffer_size <= 0 || !p_format
|| divisor <= 0) {
return;
}
memset(&tz, 0, sizeof(tz));
/* get this function in cached memory */
gettimeofday(&tvstart, &tz);
cycles[0] = rdtsc();
gettimeofday(&tvstart, &tz);
/* we don't trust that this is any specific length of time */
usleep(100);
cycles[1] = rdtsc();
gettimeofday(&tvstop, &tz);
microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) +
(tvstop.tv_usec - tvstart.tv_usec);
snprintf(p_client_buffer, client_buffer_size, p_format,
(float) ((cycles[1] - cycles[0]) / microseconds) / divisor);
return;
#else
/* FIXME: hardwired: get freq for first cpu!
* this whole function needs to be rethought and redone for
* multi-cpu/multi-core/multi-threaded environments and
* arbitrary combinations thereof */
get_freq(p_client_buffer, client_buffer_size, p_format, divisor, 1);
return;
#endif
}
#define CPUFREQ_PREFIX "/sys/devices/system/cpu"
#define CPUFREQ_POSTFIX "cpufreq/scaling_cur_freq"
/* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
char get_freq(char *p_client_buffer, size_t client_buffer_size, char *p_format,
int divisor, unsigned int cpu)
{
FILE *f;
static int rep = 0;
char frequency[32];
char s[256];
double freq = 0;
if (!p_client_buffer || client_buffer_size <= 0 || !p_format
|| divisor <= 0) {
return 0;
}
if (!prefer_proc) {
char current_freq_file[128];
snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu - 1,
CPUFREQ_POSTFIX);
f = fopen(current_freq_file, "r");
if (f) {
/* if there's a cpufreq /sys node, read the current frequency from
* this node and divide by 1000 to get Mhz. */
if (fgets(s, sizeof(s), f)) {
s[strlen(s) - 1] = '\0';
freq = strtod(s, NULL);
}
fclose(f);
snprintf(p_client_buffer, client_buffer_size, p_format,
(freq / 1000) / divisor);
return 1;
}
}
// open the CPU information file
f = open_file("/proc/cpuinfo", &rep);
if (!f) {
perror("Conky: Failed to access '/proc/cpuinfo' at get_freq()");
return 0;
}
// read the file
while (fgets(s, sizeof(s), f) != NULL) {
#if defined(__i386) || defined(__x86_64)
// and search for the cpu mhz
if (strncmp(s, "cpu MHz", 7) == 0 && cpu == 0) {
#else
#if defined(__alpha)
// different on alpha
if (strncmp(s, "cycle frequency [Hz]", 20) == 0 && cpu == 0) {
#else
// this is different on ppc for some reason
if (strncmp(s, "clock", 5) == 0 && cpu == 0) {
#endif // defined(__alpha)
#endif // defined(__i386) || defined(__x86_64)
// copy just the number
strcpy(frequency, strchr(s, ':') + 2);
#if defined(__alpha)
// strip " est.\n"
frequency[strlen(frequency) - 6] = '\0';
// kernel reports in Hz
freq = strtod(frequency, NULL) / 1000000;
#else
// strip \n
frequency[strlen(frequency) - 1] = '\0';
freq = strtod(frequency, NULL);
#endif
break;
}
if (strncmp(s, "processor", 9) == 0) {
cpu--;
continue;
}
}
fclose(f);
snprintf(p_client_buffer, client_buffer_size, p_format,
(float) freq / divisor);
return 1;
}
#define CPUFREQ_VOLTAGE "cpufreq/scaling_voltages"
/* /sys/devices/system/cpu/cpu0/cpufreq/scaling_voltages looks something
* like this:
# frequency voltage
1800000 1340
1600000 1292
1400000 1100
1200000 988
1000000 1116
800000 1004
600000 988
* Peter Tarjan (ptarjan@citromail.hu) */
/* return cpu voltage in mV (use divisor=1) or V (use divisor=1000) */
char get_voltage(char *p_client_buffer, size_t client_buffer_size,
char *p_format, int divisor, unsigned int cpu)
{
FILE *f;
char s[256];
int freq = 0;
int voltage = 0;
char current_freq_file[128];
int freq_comp = 0;
/* build the voltage file name */
cpu--;
snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu,
CPUFREQ_POSTFIX);
if (!p_client_buffer || client_buffer_size <= 0 || !p_format
|| divisor <= 0) {
return 0;
}
/* read the current cpu frequency from the /sys node */
f = fopen(current_freq_file, "r");
if (f) {
if (fgets(s, sizeof(s), f)) {
s[strlen(s) - 1] = '\0';
freq = strtod(s, NULL);
}
fclose(f);
} else {
fprintf(stderr, "Conky: Failed to access '%s' at ", current_freq_file);
perror("get_voltage()");
if (f) {
fclose(f);
}
return 0;
}
snprintf(current_freq_file, 127, "%s/cpu%d/%s", CPUFREQ_PREFIX, cpu,
CPUFREQ_VOLTAGE);
/* use the current cpu frequency to find the corresponding voltage */
f = fopen(current_freq_file, "r");
if (f) {
while (!feof(f)) {
char line[256];
if (fgets(line, 255, f) == NULL) {
break;
}
sscanf(line, "%d %d", &freq_comp, &voltage);
if (freq_comp == freq) {
break;
}
}
fclose(f);
} else {
fprintf(stderr, "Conky: Failed to access '%s' at ", current_freq_file);
perror("get_voltage()");
if (f) {
fclose(f);
}
return 0;
}
snprintf(p_client_buffer, client_buffer_size, p_format,
(float) voltage / divisor);
return 1;
}
#define ACPI_FAN_DIR "/proc/acpi/fan/"
void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size)
{
static int rep = 0;
char buf[256];
char buf2[256];
FILE *fp;
if (!p_client_buffer || client_buffer_size <= 0) {
return;
}
/* yeah, slow... :/ */
if (!get_first_file_in_a_directory(ACPI_FAN_DIR, buf, &rep)) {
snprintf(p_client_buffer, client_buffer_size, "no fans?");
return;
}
snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_FAN_DIR, buf);
fp = open_file(buf2, &rep);
if (!fp) {
snprintf(p_client_buffer, client_buffer_size,
"can't open fan's state file");
return;
}
memset(buf, 0, sizeof(buf));
fscanf(fp, "%*s %99s", buf);
fclose(fp);
snprintf(p_client_buffer, client_buffer_size, "%s", buf);
}
#define ACPI_AC_ADAPTER_DIR "/proc/acpi/ac_adapter/"
void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size)
{
static int rep = 0;
char buf[256];
char buf2[256];
FILE *fp;
if (!p_client_buffer || client_buffer_size <= 0) {
return;
}
/* yeah, slow... :/ */
if (!get_first_file_in_a_directory(ACPI_AC_ADAPTER_DIR, buf, &rep)) {
snprintf(p_client_buffer, client_buffer_size, "no ac_adapters?");
return;
}
snprintf(buf2, sizeof(buf2), "%s%s/state", ACPI_AC_ADAPTER_DIR, buf);
fp = open_file(buf2, &rep);
if (!fp) {
snprintf(p_client_buffer, client_buffer_size,
"No ac adapter found.... where is it?");
return;
}
memset(buf, 0, sizeof(buf));
fscanf(fp, "%*s %99s", buf);
fclose(fp);
snprintf(p_client_buffer, client_buffer_size, "%s", buf);
}
/*
/proc/acpi/thermal_zone/THRM/cooling_mode
cooling mode: active
/proc/acpi/thermal_zone/THRM/polling_frequency
/proc/acpi/thermal_zone/THRM/state
state: ok
/proc/acpi/thermal_zone/THRM/temperature
temperature: 45 C
/proc/acpi/thermal_zone/THRM/trip_points
critical (S5): 73 C
passive: 73 C: tc1=4 tc2=3 tsp=40 devices=0xcdf6e6c0
*/
#define ACPI_THERMAL_DIR "/proc/acpi/thermal_zone/"
#define ACPI_THERMAL_FORMAT "/proc/acpi/thermal_zone/%s/temperature"
int open_acpi_temperature(const char *name)
{
char path[256];
char buf[256];
int fd;
if (name == NULL || strcmp(name, "*") == 0) {
static int rep = 0;
if (!get_first_file_in_a_directory(ACPI_THERMAL_DIR, buf, &rep)) {
return -1;
}
name = buf;
}
snprintf(path, 255, ACPI_THERMAL_FORMAT, name);
fd = open(path, O_RDONLY);
if (fd < 0) {
ERR("can't open '%s': %s", path, strerror(errno));
}
return fd;
}
static double last_acpi_temp;
static double last_acpi_temp_time;
double get_acpi_temperature(int fd)
{
if (fd <= 0) {
return 0;
}
/* don't update acpi temperature too often */
if (current_update_time - last_acpi_temp_time < 11.32) {
return last_acpi_temp;
}
last_acpi_temp_time = current_update_time;
/* seek to beginning */
lseek(fd, 0, SEEK_SET);
/* read */
{
char buf[256];
int n;
n = read(fd, buf, 255);
if (n < 0) {
ERR("can't read fd %d: %s", fd, strerror(errno));
} else {
buf[n] = '\0';
sscanf(buf, "temperature: %lf", &last_acpi_temp);
}
}
return last_acpi_temp;
}
/*
hipo@lepakko hipo $ cat /proc/acpi/battery/BAT1/info
present: yes
design capacity: 4400 mAh
last full capacity: 4064 mAh
battery technology: rechargeable
design voltage: 14800 mV
design capacity warning: 300 mAh
design capacity low: 200 mAh
capacity granularity 1: 32 mAh
capacity granularity 2: 32 mAh
model number: 02KT
serial number: 16922
battery type: LION
OEM info: SANYO
*/
/*
hipo@lepakko conky $ cat /proc/acpi/battery/BAT1/state
present: yes
capacity state: ok
charging state: unknown
present rate: 0 mA
remaining capacity: 4064 mAh
present voltage: 16608 mV
*/
/*
2213<@jupet�kellari��> jupet@lagi-unstable:~$ cat /proc/apm
2213<@jupet�kellari��> 1.16 1.2 0x03 0x01 0xff 0x10 -1% -1 ?
2213<@jupet�kellari��> (-1 ollee ei akkua kiinni, koska akku on p�yd�ll�)
2214<@jupet�kellari��> jupet@lagi-unstable:~$ cat /proc/apm
2214<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x03 0x09 98% -1 ?
2238<@jupet�kellari��> 1.16 1.2 0x03 0x00 0x00 0x01 100% -1 ? ilman verkkovirtaa
2239<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x00 0x01 99% -1 ? verkkovirralla
2240<@jupet�kellari��> 1.16 1.2 0x03 0x01 0x03 0x09 100% -1 ? verkkovirralla ja monitori p��ll�
2241<@jupet�kellari��> 1.16 1.2 0x03 0x00 0x00 0x01 99% -1 ? monitori p��ll� mutta ilman verkkovirtaa
*/
/* Kapil Hari Paranjape
Linux 2.6.24 onwards battery info is in
/sys/class/power_supply/BAT0/
On my system I get the following.
/sys/class/power_supply/BAT0/uevent:
PHYSDEVPATH=/devices/LNXSYSTM:00/device:00/PNP0A03:00/device:01/PNP0C09:00/PNP0C0A:00
PHYSDEVBUS=acpi
PHYSDEVDRIVER=battery
POWER_SUPPLY_NAME=BAT0
POWER_SUPPLY_TYPE=Battery
POWER_SUPPLY_STATUS=Discharging
POWER_SUPPLY_PRESENT=1
POWER_SUPPLY_TECHNOLOGY=Li-ion
POWER_SUPPLY_VOLTAGE_MIN_DESIGN=10800000
POWER_SUPPLY_VOLTAGE_NOW=10780000
POWER_SUPPLY_CURRENT_NOW=13970000
POWER_SUPPLY_ENERGY_FULL_DESIGN=47510000
POWER_SUPPLY_ENERGY_FULL=27370000
POWER_SUPPLY_ENERGY_NOW=11810000
POWER_SUPPLY_MODEL_NAME=IBM-92P1060
POWER_SUPPLY_MANUFACTURER=Panasonic
On some systems POWER_SUPPLY_ENERGY_* is replaced by POWER_SUPPLY_CHARGE_*
*/
#define SYSFS_BATTERY_BASE_PATH "/sys/class/power_supply"
#define ACPI_BATTERY_BASE_PATH "/proc/acpi/battery"
#define APM_PATH "/proc/apm"
#define MAX_BATTERY_COUNT 4
static FILE *sysfs_bat_fp[MAX_BATTERY_COUNT];
static FILE *acpi_bat_fp[MAX_BATTERY_COUNT];
static FILE *apm_bat_fp[MAX_BATTERY_COUNT];
static int batteries_initialized = 0;
static char batteries[MAX_BATTERY_COUNT][32];
static int acpi_last_full[MAX_BATTERY_COUNT];
static int acpi_design_capacity[MAX_BATTERY_COUNT];
/* e.g. "charging 75%" */
static char last_battery_str[MAX_BATTERY_COUNT][64];
/* e.g. "3h 15m" */
static char last_battery_time_str[MAX_BATTERY_COUNT][64];
static double last_battery_time[MAX_BATTERY_COUNT];
static int last_battery_perct[MAX_BATTERY_COUNT];
static double last_battery_perct_time[MAX_BATTERY_COUNT];
void init_batteries(void)
{
int idx;
if (batteries_initialized) {
return;
}
for (idx = 0; idx < MAX_BATTERY_COUNT; idx++) {
batteries[idx][0] = '\0';
}
batteries_initialized = 1;
}
int get_battery_idx(const char *bat)
{
int idx;
for (idx = 0; idx < MAX_BATTERY_COUNT; idx++) {
if (!strlen(batteries[idx]) || !strcmp(batteries[idx], bat)) {
break;
}
}
/* if not found, enter a new entry */
if (!strlen(batteries[idx])) {
snprintf(batteries[idx], 31, "%s", bat);
}
return idx;
}
void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item)
{
static int idx, rep = 0, rep2 = 0;
char acpi_path[128];
snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat);
char sysfs_path[128];
snprintf(sysfs_path, 127, SYSFS_BATTERY_BASE_PATH "/%s/uevent", bat);
init_batteries();
idx = get_battery_idx(bat);
/* don't update battery too often */
if (current_update_time - last_battery_time[idx] < 29.5) {
goto set_return_value;
}
last_battery_time[idx] = current_update_time;
memset(last_battery_str[idx], 0, sizeof(last_battery_str[idx]));
memset(last_battery_time_str[idx], 0, sizeof(last_battery_time_str[idx]));
/* first try SYSFS if that fails try ACPI */
if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL)
sysfs_bat_fp[idx] = open_file(sysfs_path, &rep);
if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL)
acpi_bat_fp[idx] = open_file(acpi_path, &rep);
if (sysfs_bat_fp[idx] != NULL) {
/* SYSFS */
int present_rate = -1;
int remaining_capacity = -1;
char charging_state[64];
char present[4];
strcpy(charging_state, "Unknown");
while (!feof(sysfs_bat_fp[idx])) {
char buf[256];
if (fgets(buf, 256, sysfs_bat_fp[idx]) == NULL)
break;
/* let's just hope units are ok */
if (strncmp (buf, "POWER_SUPPLY_PRESENT=1", 22) == 0)
strcpy(present, "Yes");
else if (strncmp (buf, "POWER_SUPPLY_PRESENT=0", 22) == 0)
strcpy(present, "No");
else if (strncmp (buf, "POWER_SUPPLY_STATUS=", 20) == 0)
sscanf(buf, "POWER_SUPPLY_STATUS=%63s", charging_state);
/* present_rate is not the same as the
current flowing now but it is the same value
which was used in the past. so we continue
the tradition! */
else if (strncmp(buf, "POWER_SUPPLY_CURRENT_NOW=", 25) == 0)
sscanf(buf, "POWER_SUPPLY_CURRENT_NOW=%d", &present_rate);
else if (strncmp(buf, "POWER_SUPPLY_ENERGY_NOW=", 24) == 0)
sscanf(buf, "POWER_SUPPLY_ENERGY_NOW=%d", &remaining_capacity);
else if (strncmp(buf, "POWER_SUPPLY_ENERGY_FULL=", 25) == 0)
sscanf(buf, "POWER_SUPPLY_ENERGY_FULL=%d", &acpi_last_full[idx]);
else if (strncmp(buf, "POWER_SUPPLY_CHARGE_NOW=", 24) == 0)
sscanf(buf, "POWER_SUPPLY_CHARGE_NOW=%d", &remaining_capacity);
else if (strncmp(buf, "POWER_SUPPLY_CHARGE_FULL=", 25) == 0)
sscanf(buf, "POWER_SUPPLY_CHARGE_FULL=%d", &acpi_last_full[idx]);
}
fclose(sysfs_bat_fp[idx]);
sysfs_bat_fp[idx] = NULL;
/* Hellf[i]re notes that remaining capacity can exceed acpi_last_full */
if (remaining_capacity > acpi_last_full[idx])
acpi_last_full[idx] = remaining_capacity; /* normalize to 100% */
/* not present */
if (strcmp(present, "No") == 0) {
strncpy(last_battery_str[idx], "not present", 64);
}
/* charging */
else if (strcmp(charging_state, "Charging") == 0) {
if (acpi_last_full[idx] != 0 && present_rate > 0) {
/* e.g. charging 75% */
snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "Charging %i%%",
(int) (((float) remaining_capacity / acpi_last_full[idx]) * 100 ));
/* e.g. 2h 37m */
format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx])-1,
(long) (((float)(acpi_last_full[idx] - remaining_capacity) / present_rate) * 3600));
} else if (acpi_last_full[idx] != 0 && present_rate <= 0) {
snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "Charging %d%%",
(int) (((float)remaining_capacity / acpi_last_full[idx]) * 100));
} else {
strncpy(last_battery_str[idx], "Charging", sizeof(last_battery_str[idx])-1);
}
}
/* discharging */
else if (strncmp(charging_state, "Discharging", 64) == 0) {
if (present_rate > 0) {
/* e.g. discharging 35% */
snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "Discharging %i%%",
(int) (((float) remaining_capacity / acpi_last_full[idx]) * 100 ));
/* e.g. 1h 12m */
format_seconds(last_battery_time_str[idx], sizeof(last_battery_time_str[idx])-1,
(long) (((float)(acpi_last_full[idx] - remaining_capacity) / present_rate) * 3600));
} else if (present_rate == 0) { /* Thanks to Nexox for this one */
snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1, "Full");
} else {
snprintf(last_battery_str[idx], sizeof(last_battery_str[idx])-1,
"Discharging %d%%",
(int) (((float)remaining_capacity / acpi_last_full[idx]) * 100));
}
}
/* charged */
/* thanks to Lukas Zapletal */
else if (strncmp(charging_state, "Charged", 64) == 0) {
/* Below happens with the second battery on my X40,
* when the second one is empty and the first one
* being charged. */
if (remaining_capacity == 0)
strcpy(last_battery_str[idx], "Empty");
else
strcpy(last_battery_str[idx], "Charged");
}
/* unknown, probably full / AC */
else {
if (acpi_last_full[idx] != 0
&& remaining_capacity != acpi_last_full[idx])
snprintf(last_battery_str[idx], 64, "Unknown %d%%",
(int) (((float)remaining_capacity / acpi_last_full[idx]) * 100));
else
strncpy(last_battery_str[idx], "AC", 64);
}
} else if (acpi_bat_fp[idx] != NULL) {
/* ACPI */
int present_rate = -1;
int remaining_capacity = -1;
char charging_state[64];
char present[4];
/* read last full capacity if it's zero */
if (acpi_last_full[idx] == 0) {
static int rep = 0;
char path[128];
FILE *fp;
snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat);
fp = open_file(path, &rep);
if (fp != NULL) {
while (!feof(fp)) {
char b[256];
if (fgets(b, 256, fp) == NULL) {
break;
}
if (sscanf(b, "last full capacity: %d",
&acpi_last_full[idx]) != 0) {
break;
}
}
fclose(fp);
}
}
fseek(acpi_bat_fp[idx], 0, SEEK_SET);
strcpy(charging_state, "unknown");
while (!feof(acpi_bat_fp[idx])) {
char buf[256];
if (fgets(buf, 256, acpi_bat_fp[idx]) == NULL) {
break;
}
/* let's just hope units are ok */
if (strncmp(buf, "present:", 8) == 0) {
sscanf(buf, "present: %4s", present);
} else if (strncmp(buf, "charging state:", 15) == 0) {
sscanf(buf, "charging state: %63s", charging_state);
} else if (strncmp(buf, "present rate:", 13) == 0) {
sscanf(buf, "present rate: %d", &present_rate);
} else if (strncmp(buf, "remaining capacity:", 19) == 0) {
sscanf(buf, "remaining capacity: %d", &remaining_capacity);
}
}
/* Hellf[i]re notes that remaining capacity can exceed acpi_last_full */
if (remaining_capacity > acpi_last_full[idx]) {
/* normalize to 100% */
acpi_last_full[idx] = remaining_capacity;
}
/* not present */
if (strcmp(present, "no") == 0) {
strncpy(last_battery_str[idx], "not present", 64);
/* charging */
} else if (strcmp(charging_state, "charging") == 0) {
if (acpi_last_full[idx] != 0 && present_rate > 0) {
/* e.g. charging 75% */
snprintf(last_battery_str[idx],
sizeof(last_battery_str[idx]) - 1, "charging %i%%",
(int) ((remaining_capacity * 100) / acpi_last_full[idx]));
/* e.g. 2h 37m */
format_seconds(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1,
(long) (((acpi_last_full[idx] - remaining_capacity) *
3600) / present_rate));
} else if (acpi_last_full[idx] != 0 && present_rate <= 0) {
snprintf(last_battery_str[idx],
sizeof(last_battery_str[idx]) - 1, "charging %d%%",
(int) ((remaining_capacity * 100) / acpi_last_full[idx]));
} else {
strncpy(last_battery_str[idx], "charging",
sizeof(last_battery_str[idx]) - 1);
}
/* discharging */
} else if (strncmp(charging_state, "discharging", 64) == 0) {
if (present_rate > 0) {
/* e.g. discharging 35% */
snprintf(last_battery_str[idx],
sizeof(last_battery_str[idx]) - 1, "discharging %i%%",
(int) ((remaining_capacity * 100) / acpi_last_full[idx]));
/* e.g. 1h 12m */
format_seconds(last_battery_time_str[idx],
sizeof(last_battery_time_str[idx]) - 1,
(long) ((remaining_capacity * 3600) / present_rate));
} else if (present_rate == 0) { /* Thanks to Nexox for this one */
snprintf(last_battery_str[idx],
sizeof(last_battery_str[idx]) - 1, "full");
} else {
snprintf(last_battery_str[idx],
sizeof(last_battery_str[idx]) - 1, "discharging %d%%",
(int) ((remaining_capacity * 100) / acpi_last_full[idx]));
}
/* charged */
} else if (strncmp(charging_state, "charged", 64) == 0) {
/* thanks to Lukas Zapletal */
/* Below happens with the second battery on my X40,
* when the second one is empty and the first one being charged. */
if (remaining_capacity == 0) {
strcpy(last_battery_str[idx], "empty");
} else {
strcpy(last_battery_str[idx], "charged");
}
/* unknown, probably full / AC */
} else {
if (acpi_last_full[idx] != 0
&& remaining_capacity != acpi_last_full[idx]) {
snprintf(last_battery_str[idx], 64, "unknown %d%%",
(int) ((remaining_capacity * 100) / acpi_last_full[idx]));
} else {
strncpy(last_battery_str[idx], "AC", 64);
}
}
} else {
/* APM */
if (apm_bat_fp[idx] == NULL) {
apm_bat_fp[idx] = open_file(APM_PATH, &rep2);
}
if (apm_bat_fp[idx] != NULL) {
int ac, status, flag, life;
fscanf(apm_bat_fp[idx], "%*s %*s %*x %x %x %x %d%%",
&ac, &status, &flag, &life);
if (life == -1) {
/* could check now that there is ac */
snprintf(last_battery_str[idx], 64, "AC");
/* could check that status == 3 here? */
} else if (ac && life != 100) {
snprintf(last_battery_str[idx], 64, "charging %d%%", life);
} else {
snprintf(last_battery_str[idx], 64, "%d%%", life);
}
/* it seemed to buffer it so file must be closed (or could use
* syscalls directly but I don't feel like coding it now) */
fclose(apm_bat_fp[idx]);
apm_bat_fp[idx] = NULL;
}
}
set_return_value:
switch (item) {
case BATTERY_STATUS:
snprintf(buf, n, "%s", last_battery_str[idx]);
break;
case BATTERY_TIME:
snprintf(buf, n, "%s", last_battery_time_str[idx]);
break;
default:
break;
}
}
int get_battery_perct(const char *bat)
{
static int rep;
int idx;
char acpi_path[128];
snprintf(acpi_path, 127, ACPI_BATTERY_BASE_PATH "/%s/state", bat);
char sysfs_path[128];
snprintf(sysfs_path, 127, SYSFS_BATTERY_BASE_PATH "/%s/uevent", bat);
init_batteries();
idx = get_battery_idx(bat);
/* don't update battery too often */
if (current_update_time - last_battery_perct_time[idx] < 30) {
return last_battery_perct[idx];
}
last_battery_perct_time[idx] = current_update_time;
/* Only check for SYSFS or ACPI */
if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL)
sysfs_bat_fp[idx] = open_file(sysfs_path, &rep);
if (sysfs_bat_fp[idx] == NULL && acpi_bat_fp[idx] == NULL && apm_bat_fp[idx] == NULL)
acpi_bat_fp[idx] = open_file(acpi_path, &rep);
int remaining_capacity = -1;
if (sysfs_bat_fp[idx] != NULL) {
/* SYSFS */
while (!feof(sysfs_bat_fp[idx])) {
char buf[256];
if (fgets(buf, 256, sysfs_bat_fp[idx]) == NULL)
break;
if (strncmp(buf, "POWER_SUPPLY_CHARGE_NOW=", 24) == 0)
sscanf(buf, "POWER_SUPPLY_CHARGE_NOW=%d", &remaining_capacity);
else if (strncmp(buf, "POWER_SUPPLY_CHARGE_FULL=",25) != 0)
sscanf(buf, "POWER_SUPPLY_CHARGE_FULL=%d", &acpi_last_full[idx]);
else if (strncmp(buf, "POWER_SUPPLY_ENERGY_NOW=", 24) == 0)
sscanf(buf, "POWER_SUPPLY_ENERGY_NOW=%d", &remaining_capacity);
else if (strncmp(buf, "POWER_SUPPLY_ENERGY_FULL=",25) != 0)
sscanf(buf, "POWER_SUPPLY_ENERGY_FULL=%d", &acpi_last_full[idx]);
}
fclose(sysfs_bat_fp[idx]);
sysfs_bat_fp[idx] = NULL;
} else if (acpi_bat_fp[idx] != NULL) {
/* ACPI */
/* read last full capacity if it's zero */
if (acpi_design_capacity[idx] == 0) {
static int rep;
char path[128];
FILE *fp;
snprintf(path, 127, ACPI_BATTERY_BASE_PATH "/%s/info", bat);
fp = open_file(path, &rep);
if (fp != NULL) {
while (!feof(fp)) {
char b[256];
if (fgets(b, 256, fp) == NULL) {
break;
}
if (sscanf(b, "last full capacity: %d",
&acpi_design_capacity[idx]) != 0) {
break;
}
}
fclose(fp);
}
}
fseek(acpi_bat_fp[idx], 0, SEEK_SET);
while (!feof(acpi_bat_fp[idx])) {
char buf[256];
if (fgets(buf, 256, acpi_bat_fp[idx]) == NULL) {
break;
}
if (buf[0] == 'r') {
sscanf(buf, "remaining capacity: %d", &remaining_capacity);
}
}
}
if (remaining_capacity < 0) {
return 0;
}
/* compute the battery percentage */
last_battery_perct[idx] =
(int) (((float) remaining_capacity / acpi_design_capacity[idx]) * 100);
return last_battery_perct[idx];
}
int get_battery_perct_bar(const char *bar)
{
int idx;
get_battery_perct(bar);
idx = get_battery_idx(bar);
return (int) (last_battery_perct[idx] * 2.56 - 1);
}
/* On Apple powerbook and ibook:
$ cat /proc/pmu/battery_0
flags : 00000013
charge : 3623
max_charge : 3720
current : 388
voltage : 16787
time rem. : 900
$ cat /proc/pmu/info
PMU driver version : 2
PMU firmware version : 0c
AC Power : 1
Battery count : 1
*/
/* defines as in */
#define PMU_BATT_PRESENT 0x00000001
#define PMU_BATT_CHARGING 0x00000002
static FILE *pmu_battery_fp;
static FILE *pmu_info_fp;
static char pb_battery_info[3][32];
static double pb_battery_info_update;
#define PMU_PATH "/proc/pmu"
void get_powerbook_batt_info(char *buf, size_t n, int i)
{
static int rep = 0;
const char *batt_path = PMU_PATH "/battery_0";
const char *info_path = PMU_PATH "/info";
int flags, charge, max_charge, ac = -1;
long time = -1;
/* don't update battery too often */
if (current_update_time - pb_battery_info_update < 29.5) {
snprintf(buf, n, "%s", pb_battery_info[i]);
return;
}
pb_battery_info_update = current_update_time;
if (pmu_battery_fp == NULL) {
pmu_battery_fp = open_file(batt_path, &rep);
}
if (pmu_battery_fp != NULL) {
rewind(pmu_battery_fp);
while (!feof(pmu_battery_fp)) {
char buf[32];
if (fgets(buf, sizeof(buf), pmu_battery_fp) == NULL) {
break;
}
if (buf[0] == 'f') {
sscanf(buf, "flags : %8x", &flags);
} else if (buf[0] == 'c' && buf[1] == 'h') {
sscanf(buf, "charge : %d", &charge);
} else if (buf[0] == 'm') {
sscanf(buf, "max_charge : %d", &max_charge);
} else if (buf[0] == 't') {
sscanf(buf, "time rem. : %ld", &time);
}
}
}
if (pmu_info_fp == NULL) {
pmu_info_fp = open_file(info_path, &rep);
}
if (pmu_info_fp != NULL) {
rewind(pmu_info_fp);
while (!feof(pmu_info_fp)) {
char buf[32];
if (fgets(buf, sizeof(buf), pmu_info_fp) == NULL) {
break;
}
if (buf[0] == 'A') {
sscanf(buf, "AC Power : %d", &ac);
}
}
}
/* update status string */
if ((ac && !(flags & PMU_BATT_PRESENT))) {
strcpy(pb_battery_info[PB_BATT_STATUS], "AC");
} else if (ac && (flags & PMU_BATT_PRESENT)
&& !(flags & PMU_BATT_CHARGING)) {
strcpy(pb_battery_info[PB_BATT_STATUS], "charged");
} else if ((flags & PMU_BATT_PRESENT) && (flags & PMU_BATT_CHARGING)) {
strcpy(pb_battery_info[PB_BATT_STATUS], "charging");
} else {
strcpy(pb_battery_info[PB_BATT_STATUS], "discharging");
}
/* update percentage string */
if (time == 0) {
pb_battery_info[PB_BATT_PERCENT][0] = 0;
} else {
snprintf(pb_battery_info[PB_BATT_PERCENT],
sizeof(pb_battery_info[PB_BATT_PERCENT]), "%d%%",
(charge * 100) / max_charge);
}
/* update time string */
if (time == 0) { /* fully charged or battery not present */
pb_battery_info[PB_BATT_TIME][0] = 0;
} else if (time < 60 * 60) { /* don't show secs */
format_seconds_short(pb_battery_info[PB_BATT_TIME],
sizeof(pb_battery_info[PB_BATT_TIME]), time);
} else {
format_seconds(pb_battery_info[PB_BATT_TIME],
sizeof(pb_battery_info[PB_BATT_TIME]), time);
}
snprintf(buf, n, "%s", pb_battery_info[i]);
}
void update_top()
{
show_nice_processes = 1;
process_find_top(info.cpu, info.memu);
info.first_process = get_first_process();
}
/* The following ifdefs were adapted from gkrellm */
#include
#if !defined(MD_MAJOR)
#define MD_MAJOR 9
#endif
#if !defined(LVM_BLK_MAJOR)
#define LVM_BLK_MAJOR 58
#endif
#if !defined(NBD_MAJOR)
#define NBD_MAJOR 43
#endif
void update_diskio()
{
static unsigned int last = UINT_MAX;
static unsigned int last_read = UINT_MAX;
static unsigned int last_write = UINT_MAX;
FILE *fp;
static int rep = 0;
char buf[512], devbuf[64];
int major, minor, i;
unsigned int current = 0;
unsigned int current_read = 0;
unsigned int current_write = 0;
unsigned int reads, writes = 0;
int col_count = 0;
if (!(fp = open_file("/proc/diskstats", &rep))) {
diskio_value = 0;
return;
}
/* read reads and writes from all disks (minor = 0), including cd-roms
* and floppies, and sum them up */
while (!feof(fp)) {
fgets(buf, 512, fp);
col_count = sscanf(buf, "%u %u %s %*u %*u %u %*u %*u %*u %u", &major,
&minor, devbuf, &reads, &writes);
/* ignore subdevices (they have only 3 matching entries in their line)
* and virtual devices (LVM, network block devices, RAM disks, Loopback)
*
* XXX: ignore devices which are part of a SW RAID (MD_MAJOR) */
if (col_count == 5 && major != LVM_BLK_MAJOR && major != NBD_MAJOR
&& major != RAMDISK_MAJOR && major != LOOP_MAJOR) {
current += reads + writes;
current_read += reads;
current_write += writes;
} else {
col_count = sscanf(buf, "%u %u %s %*u %u %*u %u",
&major, &minor, devbuf, &reads, &writes);
if (col_count != 5) {
continue;
}
}
for (i = 0; i < MAX_DISKIO_STATS; i++) {
if (diskio_stats[i].dev &&
strcmp(devbuf, diskio_stats[i].dev) == 0) {
diskio_stats[i].current =
(reads + writes - diskio_stats[i].last) / 2;
diskio_stats[i].current_read =
(reads - diskio_stats[i].last_read) / 2;
diskio_stats[i].current_write =
(writes - diskio_stats[i].last_write) / 2;
if (reads + writes < diskio_stats[i].last) {
diskio_stats[i].current = 0;
}
if (reads < diskio_stats[i].last_read) {
diskio_stats[i].current_read = 0;
diskio_stats[i].current = diskio_stats[i].current_write;
}
if (writes < diskio_stats[i].last_write) {
diskio_stats[i].current_write = 0;
diskio_stats[i].current = diskio_stats[i].current_read;
}
diskio_stats[i].last = reads + writes;
diskio_stats[i].last_read = reads;
diskio_stats[i].last_write = writes;
}
}
}
/* since the values in /proc/diststats are absolute, we have to substract
* our last reading. The numbers stand for "sectors read", and we therefore
* have to divide by two to get KB */
int tot = ((double) (current - last) / 2);
int tot_read = ((double) (current_read - last_read) / 2);
int tot_write = ((double) (current_write - last_write) / 2);
if (last_read > current_read) {
tot_read = 0;
}
if (last_write > current_write) {
tot_write = 0;
}
if (last > current) {
/* we hit this either if it's the very first time we run this, or
* when /proc/diskstats overflows; while 0 is not correct, it's at
* least not way off */
tot = 0;
}
last = current;
last_read = current_read;
last_write = current_write;
diskio_value = tot;
diskio_read_value = tot_read;
diskio_write_value = tot_write;
fclose(fp);
}
/* Here come the IBM ACPI-specific things. For reference, see
* http://ibm-acpi.sourceforge.net/README
* If IBM ACPI is installed, /proc/acpi/ibm contains the following files:
bay
beep
bluetooth
brightness
cmos
dock
driver
ecdump
fan
hotkey
led
light
thermal
video
volume
* The content of these files is described in detail in the aforementioned
* README - some of them also in the following functions accessing them.
* Peter Tarjan (ptarjan@citromail.hu) */
#define IBM_ACPI_DIR "/proc/acpi/ibm"
/* get fan speed on IBM/Lenovo laptops running the ibm acpi.
* /proc/acpi/ibm/fan looks like this (3 lines):
status: disabled
speed: 2944
commands: enable, disable
* Peter Tarjan (ptarjan@citromail.hu) */
void get_ibm_acpi_fan(char *p_client_buffer, size_t client_buffer_size)
{
if (!p_client_buffer || client_buffer_size <= 0) {
return;
}
FILE *fp;
unsigned int speed = 0;
char fan[128];
snprintf(fan, 127, "%s/fan", IBM_ACPI_DIR);
fp = fopen(fan, "r");
if (fp != NULL) {
while (!feof(fp)) {
char line[256];
if (fgets(line, 255, fp) == NULL) {
break;
}
if (sscanf(line, "speed: %d", &speed)) {
break;
}
}
} else {
CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove "
"ibm* from your Conky config file.", fan, strerror(errno));
}
fclose(fp);
snprintf(p_client_buffer, client_buffer_size, "%d", speed);
}
/* get the measured temperatures from the temperature sensors
* on IBM/Lenovo laptops running the ibm acpi.
* There are 8 values in /proc/acpi/ibm/thermal, and according to
* http://ibm-acpi.sourceforge.net/README
* these mean the following (at least on an IBM R51...)
* 0: CPU (also on the T series laptops)
* 1: Mini PCI Module (?)
* 2: HDD (?)
* 3: GPU (also on the T series laptops)
* 4: Battery (?)
* 5: N/A
* 6: Battery (?)
* 7: N/A
* I'm not too sure about those with the question mark, but the values I'm
* reading from *my* thermal file (on a T42p) look realistic for the
* hdd and the battery.
* #5 and #7 are always -128.
* /proc/acpi/ibm/thermal looks like this (1 line):
temperatures: 41 43 31 46 33 -128 29 -128
* Peter Tarjan (ptarjan@citromail.hu) */
static double last_ibm_acpi_temp_time;
void get_ibm_acpi_temps()
{
/* don't update too often */
if (current_update_time - last_ibm_acpi_temp_time < 10.00) {
return;
}
last_ibm_acpi_temp_time = current_update_time;
/* if (!p_client_buffer || client_buffer_size <= 0) {
return;
} */
FILE *fp;
char thermal[128];
snprintf(thermal, 127, "%s/thermal", IBM_ACPI_DIR);
fp = fopen(thermal, "r");
if (fp != NULL) {
while (!feof(fp)) {
char line[256];
if (fgets(line, 255, fp) == NULL) {
break;
}
if (sscanf(line, "temperatures: %d %d %d %d %d %d %d %d",
&ibm_acpi.temps[0], &ibm_acpi.temps[1], &ibm_acpi.temps[2],
&ibm_acpi.temps[3], &ibm_acpi.temps[4], &ibm_acpi.temps[5],
&ibm_acpi.temps[6], &ibm_acpi.temps[7])) {
break;
}
}
} else {
CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove "
"ibm* from your Conky config file.", thermal, strerror(errno));
}
fclose(fp);
}
/* get volume (0-14) on IBM/Lenovo laptops running the ibm acpi.
* "Volume" here is none of the mixer volumes, but a "master of masters"
* volume adjusted by the IBM volume keys.
* /proc/acpi/ibm/fan looks like this (4 lines):
level: 4
mute: off
commands: up, down, mute
commands: level ( is 0-15)
* Peter Tarjan (ptarjan@citromail.hu) */
void get_ibm_acpi_volume(char *p_client_buffer, size_t client_buffer_size)
{
if (!p_client_buffer || client_buffer_size <= 0) {
return;
}
FILE *fp;
char volume[128];
snprintf(volume, 127, "%s/volume", IBM_ACPI_DIR);
unsigned int vol = -1;
char mute[3] = "";
fp = fopen(volume, "r");
if (fp != NULL) {
while (!feof(fp)) {
char line[256];
unsigned int read_vol = -1;
if (fgets(line, 255, fp) == NULL) {
break;
}
if (sscanf(line, "level: %d", &read_vol)) {
vol = read_vol;
continue;
}
if (sscanf(line, "mute: %s", mute)) {
break;
}
}
} else {
CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove "
"ibm* from your Conky config file.", volume, strerror(errno));
}
fclose(fp);
if (strcmp(mute, "on") == 0) {
snprintf(p_client_buffer, client_buffer_size, "%s", "mute");
return;
} else {
snprintf(p_client_buffer, client_buffer_size, "%d", vol);
return;
}
}
/* static FILE *fp = NULL; */
/* get LCD brightness on IBM/Lenovo laptops running the ibm acpi.
* /proc/acpi/ibm/brightness looks like this (3 lines):
level: 7
commands: up, down
commands: level ( is 0-7)
* Peter Tarjan (ptarjan@citromail.hu) */
void get_ibm_acpi_brightness(char *p_client_buffer, size_t client_buffer_size)
{
if (!p_client_buffer || client_buffer_size <= 0) {
return;
}
FILE *fp;
unsigned int brightness = 0;
char filename[128];
snprintf(filename, 127, "%s/brightness", IBM_ACPI_DIR);
fp = fopen(filename, "r");
if (fp != NULL) {
while (!feof(fp)) {
char line[256];
if (fgets(line, 255, fp) == NULL) {
break;
}
if (sscanf(line, "level: %d", &brightness)) {
break;
}
}
} else {
CRIT_ERR("can't open '%s': %s\nYou are not using the IBM ACPI. Remove "
"ibm* from your Conky config file.", filename, strerror(errno));
}
fclose(fp);
snprintf(p_client_buffer, client_buffer_size, "%d", brightness);
}
void update_entropy(void)
{
static int rep = 0;
const char *entropy_avail = "/proc/sys/kernel/random/entropy_avail";
const char *entropy_poolsize = "/proc/sys/kernel/random/poolsize";
FILE *fp1, *fp2;
info.entropy.entropy_avail = 0;
info.entropy.poolsize = 0;
if ((fp1 = open_file(entropy_avail, &rep)) == NULL) {
return;
}
if ((fp2 = open_file(entropy_poolsize, &rep)) == NULL) {
fclose(fp1);
return;
}
fscanf(fp1, "%u", &info.entropy.entropy_avail);
fscanf(fp2, "%u", &info.entropy.poolsize);
fclose(fp1);
fclose(fp2);
info.mask |= (1 << INFO_ENTROPY);
}