conky/src/freebsd.cc

755 lines
20 KiB
C++

/*
*
* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2005-2021 Brenden Matthews, Philip Kovacs, et. al.
* (see AUTHORS)
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "config.h"
#include <sys/dkstat.h>
#include <sys/ioctl.h>
#include <sys/param.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/user.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_mib.h>
#include <net/if_var.h>
#include <devstat.h>
#include <ifaddrs.h>
#include <limits.h>
#include <unistd.h>
#include <dev/acpica/acpiio.h>
#if 0
#include <dev/wi/if_wavelan_ieee.h>
#endif
#include <mutex>
#include "conky.h"
#include "diskio.h"
#include "freebsd.h"
#include "logging.h"
#include "net_stat.h"
#include "text_object.h"
#include "top.h"
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
#define KELVTOC(x) ((x - 2732) / 10.0)
#define MAXSHOWDEVS 16
#if 0
#define FREEBSD_DEBUG
#endif
kvm_t *kd;
std::mutex kvm_proc_mutex;
__attribute__((gnu_inline)) inline void proc_find_top(struct process **cpu,
struct process **mem,
struct process **time);
static short conky_cpu_setup = 0;
static int getsysctl(const char *name, void *ptr, size_t len) {
size_t nlen = len;
if (sysctlbyname(name, ptr, &nlen, nullptr, 0) == -1) { return -1; }
if (nlen != len && errno == ENOMEM) { return -1; }
return 0;
}
struct ifmibdata *data = nullptr;
size_t len = 0;
static int swapmode(unsigned long *retavail, unsigned long *retfree) {
int n;
unsigned long pagesize = getpagesize();
struct kvm_swap swapary[1];
*retavail = 0;
*retfree = 0;
#define CONVERT(v) ((quad_t)(v) * (pagesize / 1024))
n = kvm_getswapinfo(kd, swapary, 1, 0);
if (n < 0 || swapary[0].ksw_total == 0) { return 0; }
*retavail = CONVERT(swapary[0].ksw_total);
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
n = (int)((double)swapary[0].ksw_used * 100.0 / (double)swapary[0].ksw_total);
return n;
}
void prepare_update(void) {}
int update_uptime(void) {
int mib[2] = {CTL_KERN, KERN_BOOTTIME};
struct timeval boottime;
time_t now;
size_t size = sizeof(boottime);
if ((sysctl(mib, 2, &boottime, &size, nullptr, 0) != -1) &&
(boottime.tv_sec != 0)) {
time(&now);
info.uptime = now - boottime.tv_sec;
} else {
fprintf(stderr, "Could not get uptime\n");
info.uptime = 0;
}
return 0;
}
int check_mount(struct text_object *obj) {
struct statfs *mntbuf;
int i, mntsize;
if (!obj->data.s) return 0;
mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
for (i = mntsize - 1; i >= 0; i--) {
if (strcmp(mntbuf[i].f_mntonname, obj->data.s) == 0) { return 1; }
}
return 0;
}
int update_meminfo(void) {
u_int total_pages, inactive_pages, free_pages, wire_pages, active_pages,
bufferspace, laundry_pages;
unsigned long swap_avail, swap_free;
int pagesize = getpagesize();
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_page_count\"\n");
}
if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_free_count\"\n");
}
if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_inactive_count\"\n");
}
if (GETSYSCTL("vm.stats.vm.v_wire_count", wire_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_wire_count\"\n");
}
if (GETSYSCTL("vm.stats.vm.v_active_count", active_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_active_count\"\n");
}
if (GETSYSCTL("vfs.bufspace", bufferspace)) {
fprintf(stderr, "Cannot read sysctl \"vfs.bufspace\"\n");
}
if (GETSYSCTL("vm.stats.vm.v_laundry_count", laundry_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_laundry_count\"\n");
}
info.memmax = total_pages * (pagesize >> 10);
info.mem = (total_pages - free_pages - inactive_pages) * (pagesize >> 10);
info.memwithbuffers = info.mem;
info.memeasyfree = info.memmax - info.mem;
info.memfree = free_pages * (pagesize >> 10);
info.legacymem = info.mem;
info.memwired = wire_pages * (pagesize >> 10);
info.memactive = active_pages * (pagesize >> 10);
info.meminactive = inactive_pages * (pagesize >> 10);
info.memlaundry = laundry_pages * (pagesize >> 10);
info.buffers = bufferspace / 1024;
if ((swapmode(&swap_avail, &swap_free)) >= 0) {
info.swapmax = swap_avail;
info.swap = (swap_avail - swap_free);
info.swapfree = swap_free;
} else {
info.swapmax = 0;
info.swap = 0;
info.swapfree = 0;
}
return 0;
}
int update_net_stats(void) {
struct net_stat *ns;
double delta;
long long r, t, last_recv, last_trans;
struct ifaddrs *ifap, *ifa;
struct if_data *ifd;
/* get delta */
delta = current_update_time - last_update_time;
if (delta <= 0.0001) { return 0; }
if (getifaddrs(&ifap) < 0) { return 0; }
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *)ifa->ifa_name, nullptr, NULL);
if (ifa->ifa_flags & IFF_UP) {
struct ifaddrs *iftmp;
ns->up = 1;
last_recv = ns->recv;
last_trans = ns->trans;
if (ifa->ifa_addr->sa_family != AF_LINK) { continue; }
for (iftmp = ifa->ifa_next;
iftmp != nullptr && strcmp(ifa->ifa_name, iftmp->ifa_name) == 0;
iftmp = iftmp->ifa_next) {
if (iftmp->ifa_addr->sa_family == AF_INET) {
memcpy(&(ns->addr), iftmp->ifa_addr, iftmp->ifa_addr->sa_len);
}
}
ifd = (struct if_data *)ifa->ifa_data;
r = ifd->ifi_ibytes;
t = ifd->ifi_obytes;
if (r < ns->last_read_recv) {
ns->recv += ((long long)4294967295U - ns->last_read_recv) + r;
} else {
ns->recv += (r - ns->last_read_recv);
}
ns->last_read_recv = r;
if (t < ns->last_read_trans) {
ns->trans += ((long long)4294967295U - ns->last_read_trans) + t;
} else {
ns->trans += (t - ns->last_read_trans);
}
ns->last_read_trans = t;
/* calculate speeds */
ns->recv_speed = (ns->recv - last_recv) / delta;
ns->trans_speed = (ns->trans - last_trans) / delta;
} else {
ns->up = 0;
}
}
freeifaddrs(ifap);
return 0;
}
int update_total_processes(void) {
int n_processes;
std::lock_guard<std::mutex> guard(kvm_proc_mutex);
kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
info.procs = n_processes;
return 0;
}
int update_running_processes(void) {
struct kinfo_proc *p;
int n_processes;
int i, cnt = 0;
std::lock_guard<std::mutex> guard(kvm_proc_mutex);
p = kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
for (i = 0; i < n_processes; i++) {
if (p[i].ki_stat == SRUN) { cnt++; }
}
info.run_procs = cnt;
return 0;
}
void get_cpu_count(void) {
int cpu_count = 0;
if (GETSYSCTL("hw.ncpu", cpu_count) == 0) {
info.cpu_count = cpu_count;
} else {
fprintf(stderr, "Cannot get hw.ncpu\n");
info.cpu_count = 0;
}
info.cpu_usage = (float *)malloc((info.cpu_count + 1) * sizeof(float));
if (info.cpu_usage == nullptr) { CRIT_ERR("malloc"); }
}
struct cpu_info {
long oldtotal;
long oldused;
};
int update_cpu_usage(void) {
int i, j = 0;
long used, total;
long *cp_time = nullptr;
size_t cp_len;
static struct cpu_info *cpu = nullptr;
unsigned int malloc_cpu_size = 0;
extern void *global_cpu;
/* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */
if ((conky_cpu_setup == 0) || (!info.cpu_usage)) {
get_cpu_count();
conky_cpu_setup = 1;
}
if (!global_cpu) {
malloc_cpu_size = (info.cpu_count + 1) * sizeof(struct cpu_info);
cpu = (cpu_info *)malloc(malloc_cpu_size);
memset(cpu, 0, malloc_cpu_size);
global_cpu = cpu;
}
/* cpu[0] is overall stats, get it from separate sysctl */
cp_len = CPUSTATES * sizeof(long);
cp_time = (long int *)malloc(cp_len);
if (sysctlbyname("kern.cp_time", cp_time, &cp_len, nullptr, 0) < 0) {
fprintf(stderr, "Cannot get kern.cp_time\n");
}
total = 0;
for (j = 0; j < CPUSTATES; j++) total += cp_time[j];
used = total - cp_time[CP_IDLE];
if ((total - cpu[0].oldtotal) != 0) {
info.cpu_usage[0] =
((double)(used - cpu[0].oldused)) / (double)(total - cpu[0].oldtotal);
} else {
info.cpu_usage[0] = 0;
}
cpu[0].oldused = used;
cpu[0].oldtotal = total;
free(cp_time);
/* per-core stats */
cp_len = CPUSTATES * sizeof(long) * info.cpu_count;
cp_time = (long int *)malloc(cp_len);
/* on e.g. i386 SMP we may have more values than actual cpus; this will just
* drop extra values */
if (sysctlbyname("kern.cp_times", cp_time, &cp_len, nullptr, 0) < 0 &&
errno != ENOMEM) {
fprintf(stderr, "Cannot get kern.cp_times\n");
}
for (i = 0; i < (int)info.cpu_count; i++) {
total = 0;
for (j = 0; j < CPUSTATES; j++) total += cp_time[i * CPUSTATES + j];
used = total - cp_time[i * CPUSTATES + CP_IDLE];
if ((total - cpu[i + 1].oldtotal) != 0) {
info.cpu_usage[i + 1] = ((double)(used - cpu[i + 1].oldused)) /
(double)(total - cpu[i + 1].oldtotal);
} else {
info.cpu_usage[i + 1] = 0;
}
cpu[i + 1].oldused = used;
cpu[i + 1].oldtotal = total;
}
free(cp_time);
return 0;
}
void free_cpu(struct text_object *) { /* no-op */
}
int update_load_average(void) {
double v[3];
getloadavg(v, 3);
info.loadavg[0] = (double)v[0];
info.loadavg[1] = (double)v[1];
info.loadavg[2] = (double)v[2];
return 0;
}
double get_acpi_temperature(int fd) {
int temp;
(void)fd;
if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp) == 0) {
return KELVTOC(temp);
} else if (GETSYSCTL("dev.cpu.0.temperature", temp) == 0) {
return KELVTOC(temp);
} else if (GETSYSCTL("dev.amdtemp.0.core0.sensor0", temp) == 0) {
return KELVTOC(temp);
}
fprintf(stderr, "Cannot get temperature from sysctl\n");
return 0.0;
}
static void get_battery_stats(int *battime, int *batcapacity, int *batstate,
int *ac) {
if (battime && GETSYSCTL("hw.acpi.battery.time", *battime)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.time\"\n");
}
if (batcapacity && GETSYSCTL("hw.acpi.battery.life", *batcapacity)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.life\"\n");
}
if (batstate && GETSYSCTL("hw.acpi.battery.state", *batstate)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.state\"\n");
}
if (ac && GETSYSCTL("hw.acpi.acline", *ac)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n");
}
}
void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item) {
int battime, batcapacity, batstate, ac;
(void)bat;
get_battery_stats(&battime, &batcapacity, &batstate, &ac);
if (batstate != 1 && batstate != 2 && batstate != 0 && batstate != 7)
fprintf(stderr, "Unknown battery state %d!\n", batstate);
else if (batstate != 1 && ac == 0)
fprintf(stderr, "Battery charging while not on AC!\n");
else if (batstate == 1 && ac == 1)
fprintf(stderr, "Battery discharing while on AC!\n");
switch (item) {
case BATTERY_TIME:
if (batstate == 1 && battime != -1)
snprintf(buf, n, "%d:%2.2d", battime / 60, battime % 60);
break;
case BATTERY_STATUS:
if (batstate == 1) // Discharging
snprintf(buf, n, "remaining (%d%%)", batcapacity);
else
snprintf(buf, n,
batstate == 2
? "charging (%d%%)"
: (batstate == 7 ? "absent/on AC" : "charged (%d%%)"),
batcapacity);
break;
default:
fprintf(stderr, "Unknown requested battery stat %d\n", item);
}
}
int get_battery_perct(const char *) {
int batcapacity;
get_battery_stats(nullptr, &batcapacity, NULL, NULL);
return batcapacity;
}
void get_battery_power_draw(char *buffer, unsigned int n, const char *bat) {
int rate = 0;
double ret = 0;
/*
* hw.acpi.battery.rate returns battery discharge rate in mW,
* or -1 (according to docs, but also 0 in practice) when not discharging.
*
* ref. acpi_battery(4)
*/
if (GETSYSCTL("hw.acpi.battery.rate", rate)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.rate\"\n");
}
if (rate > 0) { ret = (double)rate / (double)1000; }
snprintf(buffer, n, "%.1f", ret);
}
double get_battery_perct_bar(struct text_object *obj) {
int batperct = get_battery_perct(obj->data.s);
return batperct;
}
int open_acpi_temperature(const char *name) {
(void)name;
/* Not applicable for FreeBSD. */
return 0;
}
void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size,
const char *adapter) {
int state;
(void)adapter; // only linux uses this
if (!p_client_buffer || client_buffer_size <= 0) { return; }
if (GETSYSCTL("hw.acpi.acline", state)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n");
return;
}
if (state) {
strncpy(p_client_buffer, "Running on AC Power", client_buffer_size);
} else {
strncpy(p_client_buffer, "Running on battery", client_buffer_size);
}
}
void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) {
/* not implemented */
if (p_client_buffer && client_buffer_size > 0) {
memset(p_client_buffer, 0, client_buffer_size);
}
}
/* void */
char get_freq(char *p_client_buffer, size_t client_buffer_size,
const char *p_format, int divisor, unsigned int cpu) {
int freq;
char freq_sysctl[16] = {0};
if (!p_client_buffer || client_buffer_size <= 0 || !p_format ||
divisor <= 0) {
return 0;
}
snprintf(freq_sysctl, sizeof(freq_sysctl), "dev.cpu.%d.freq", (cpu - 1));
if (GETSYSCTL(freq_sysctl, freq) == 0) {
snprintf(p_client_buffer, client_buffer_size, p_format,
(float)freq / divisor);
} else {
snprintf(p_client_buffer, client_buffer_size, p_format, 0.0f);
}
return 1;
}
#if 0
void update_wifi_stats(void)
{
struct ifreq ifr; /* interface stats */
struct wi_req wireq;
struct net_stat *ns;
struct ifaddrs *ifap, *ifa;
struct ifmediareq ifmr;
int s;
/* Get iface table */
if (getifaddrs(&ifap) < 0) {
return;
}
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *) ifa->ifa_name, nullptr, NULL);
s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
/* Get media type */
bzero(&ifmr, sizeof(ifmr));
strlcpy(ifmr.ifm_name, ifa->ifa_name, IFNAMSIZ);
if (ioctl(s, SIOCGIFMEDIA, (caddr_t) &ifmr) < 0) {
close(s);
return;
}
/* We can monitor only wireless interfaces
* which are not in hostap mode */
if ((ifmr.ifm_active & IFM_IEEE80211)
&& !(ifmr.ifm_active & IFM_IEEE80211_HOSTAP)) {
/* Get wi status */
bzero(&ifr, sizeof(ifr));
strlcpy(ifr.ifr_name, ifa->ifa_name, IFNAMSIZ);
wireq.wi_type = WI_RID_COMMS_QUALITY;
wireq.wi_len = WI_MAX_DATALEN;
ifr.ifr_data = (void *) &wireq;
if (ioctl(s, SIOCGWAVELAN, (caddr_t) &ifr) < 0) {
perror("ioctl (getting wi status)");
exit(1);
}
/* wi_val[0] = quality
* wi_val[1] = signal
* wi_val[2] = noise */
ns->linkstatus = (int) wireq.wi_val[1];
}
cleanup:
close(s);
}
}
#endif
int update_diskio(void) {
int devs_count, num_selected, num_selections, dn;
struct device_selection *dev_select = nullptr;
long select_generation;
static struct statinfo statinfo_cur;
char device_name[DEFAULT_TEXT_BUFFER_SIZE];
struct diskio_stat *cur;
unsigned int reads, writes;
unsigned int total_reads = 0, total_writes = 0;
memset(&statinfo_cur, 0, sizeof(statinfo_cur));
statinfo_cur.dinfo = (struct devinfo *)calloc(1, sizeof(struct devinfo));
stats.current = stats.current_read = stats.current_write = 0;
if (devstat_getdevs(nullptr, &statinfo_cur) < 0) {
free(statinfo_cur.dinfo);
return 0;
}
devs_count = statinfo_cur.dinfo->numdevs;
if (devstat_selectdevs(&dev_select, &num_selected, &num_selections,
&select_generation, statinfo_cur.dinfo->generation,
statinfo_cur.dinfo->devices, devs_count, nullptr, 0,
NULL, 0, DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) {
for (dn = 0; dn < devs_count; dn++) {
int di;
struct devstat *dev;
di = dev_select[dn].position;
dev = &statinfo_cur.dinfo->devices[di];
snprintf(device_name, DEFAULT_TEXT_BUFFER_SIZE, "%s%d",
dev_select[dn].device_name, dev_select[dn].unit_number);
total_reads += (reads = dev->bytes[DEVSTAT_READ] / 512);
total_writes += (writes = dev->bytes[DEVSTAT_WRITE] / 512);
for (cur = stats.next; cur; cur = cur->next) {
if (cur->dev && !strcmp(device_name, cur->dev)) {
update_diskio_values(cur, reads, writes);
break;
}
}
}
update_diskio_values(&stats, total_reads, total_writes);
free(dev_select);
}
if (statinfo_cur.dinfo->mem_ptr) { free(statinfo_cur.dinfo->mem_ptr); }
free(statinfo_cur.dinfo);
return 0;
}
/* While topless is obviously better, top is also not bad. */
void get_top_info(void) {
struct kinfo_proc *p;
struct process *proc;
int n_processes;
int i;
std::lock_guard<std::mutex> guard(kvm_proc_mutex);
p = kvm_getprocs(kd, KERN_PROC_PROC, 0, &n_processes);
for (i = 0; i < n_processes; i++) {
if (!(p[i].ki_flag & P_SYSTEM)) {
proc = get_process(p[i].ki_pid);
proc->time_stamp = g_time;
proc->name = strndup(p[i].ki_comm, text_buffer_size.get(*state));
proc->basename = strndup(p[i].ki_comm, text_buffer_size.get(*state));
proc->amount = 100.0 * p[i].ki_pctcpu / FSCALE;
proc->vsize = p[i].ki_size;
proc->rss = (p[i].ki_rssize * getpagesize());
/* ki_runtime is in microseconds, total_cpu_time in centiseconds.
* Therefore we divide by 10000. */
proc->total_cpu_time = p[i].ki_runtime / 10000;
}
}
}
void get_battery_short_status(char *buffer, unsigned int n, const char *bat) {
get_battery_stuff(buffer, n, bat, BATTERY_STATUS);
if (0 == strncmp("charging", buffer, 8)) {
buffer[0] = 'C';
memmove(buffer + 1, buffer + 8, n - 8);
} else if (0 == strncmp("remaining", buffer, 9)) {
buffer[0] = 'D';
memmove(buffer + 1, buffer + 9, n - 9);
} else if (0 == strncmp("charged", buffer, 7)) {
buffer[0] = 'F';
memmove(buffer + 1, buffer + 7, n - 7);
} else if (0 == strncmp("absent/on AC", buffer, 12)) {
buffer[0] = 'N';
memmove(buffer + 1, buffer + 12, n - 12);
}
}
int get_entropy_avail(unsigned int *val) {
/* Not applicable for FreeBSD as it uses the yarrow prng. */
(void)val;
return 1;
}
int get_entropy_poolsize(unsigned int *val) {
/* Not applicable for FreeBSD as it uses the yarrow prng. */
(void)val;
return 1;
}
void print_sysctlbyname(struct text_object *obj, char *p,
unsigned int p_max_size) {
u_int val[3] = {0};
char buf[256] = {""};
size_t len = sizeof(val);
size_t len2 = sizeof(buf);
if (0 == strcmp(obj->data.s, "")) {
snprintf(p, p_max_size, "%s", "sysctlbyname takes an argument");
return;
}
if (0 != sysctlbyname(obj->data.s, &val, &len, NULL, 0)) {
if (0 != sysctlbyname(obj->data.s, &buf, &len2, NULL, 0)) {
snprintf(p, p_max_size, "%s", "");
return;
}
}
if (0 != strcmp(buf, "")) {
snprintf(p, p_max_size, "%s", buf);
} else {
snprintf(p, p_max_size, "%lu", (unsigned long)val[0]);
}
}