conky/src/solaris.cc

504 lines
14 KiB
C++

/*
*
* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2005-2021 Brenden Matthews, Philip Kovacs, et. al.
* (see AUTHORS)
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <dirent.h>
#include <kstat.h>
#include <limits.h>
#include <net/if.h>
#include <procfs.h>
#include <project.h>
#include <sys/loadavg.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/stat.h>
#include <sys/swap.h>
#include <sys/sysinfo.h>
#include <sys/task.h>
#include <unistd.h>
#include "common.h"
#include "conky.h"
#include "diskio.h"
#include "top.h"
#include <assert.h>
#include "net_stat.h"
#include "solaris.h"
static kstat_ctl_t *kstat;
static time_t kstat_updated;
static int pageshift = INT_MAX;
static pthread_mutex_t kstat_mtx = PTHREAD_MUTEX_INITIALIZER;
static int pagetok(int pages) {
if (pageshift == INT_MAX) {
int pagesize = sysconf(_SC_PAGESIZE);
pageshift = 0;
while ((pagesize >>= 1) > 0) pageshift++;
pageshift -= 10; /* 2^10 = 1024 */
}
return (pageshift > 0 ? pages << pageshift : pages >> -pageshift);
}
static void update_kstat() {
time_t now;
pthread_mutex_lock(&kstat_mtx);
now = time(nullptr);
if (kstat == nullptr) {
if ((kstat = kstat_open()) == nullptr) {
pthread_mutex_unlock(&kstat_mtx);
NORM_ERR("can't open kstat: %s", strerror(errno));
return;
}
kstat_updated = 0;
}
if (now - kstat_updated < 2) {
/* Do not update kstats too often */
pthread_mutex_unlock(&kstat_mtx);
return;
}
if (kstat_chain_update(kstat) == -1) {
pthread_mutex_unlock(&kstat_mtx);
perror("kstat_chain_update");
return;
}
kstat_updated = now;
pthread_mutex_unlock(&kstat_mtx);
}
static kstat_named_t *get_kstat(const char *module, int inst, const char *name,
const char *stat) {
kstat_t *ksp;
update_kstat();
pthread_mutex_lock(&kstat_mtx);
ksp = kstat_lookup(kstat, (char *)module, inst, (char *)name);
if (ksp == nullptr) {
NORM_ERR("cannot lookup kstat %s:%d:%s:%s %s", module, inst, name, stat,
strerror(errno));
pthread_mutex_unlock(&kstat_mtx);
return nullptr;
}
if (kstat_read(kstat, ksp, nullptr) >= 0) {
if (ksp->ks_type == KSTAT_TYPE_NAMED || ksp->ks_type == KSTAT_TYPE_TIMER) {
kstat_named_t *knp =
(kstat_named_t *)kstat_data_lookup(ksp, (char *)stat);
pthread_mutex_unlock(&kstat_mtx);
return knp;
} else {
NORM_ERR("kstat %s:%d:%s:%s has unexpected type %d", module, inst, name,
stat, ksp->ks_type);
pthread_mutex_unlock(&kstat_mtx);
return nullptr;
}
}
NORM_ERR("cannot read kstat %s:%d:%s:%s", module, inst, name, stat);
pthread_mutex_unlock(&kstat_mtx);
return nullptr;
}
void prepare_update() { kstat_updated = 0; }
int update_meminfo() {
kstat_named_t *knp;
int nswap = swapctl(SC_GETNSWP, 0);
struct swaptable *swt;
struct swapent *swe;
char path[PATH_MAX];
unsigned long stp, sfp;
/* RAM stats */
knp = get_kstat("unix", -1, "system_pages", "freemem");
if (knp != nullptr) info.memfree = pagetok(knp->value.ui32);
info.memmax = pagetok(sysconf(_SC_PHYS_PAGES));
if (info.memmax > info.memfree)
info.mem = info.memmax - info.memfree;
else /* for non-global zones with capped memory */
info.mem = info.memmax;
/* Swap stats */
if (nswap < 1) return 0;
/* for swapctl(2) */
swt =
(struct swaptable *)malloc(nswap * sizeof(struct swapent) + sizeof(int));
if (swt == nullptr) return 0;
swt->swt_n = nswap;
swe = &(swt->swt_ent[0]);
/* We are not interested in ste_path */
for (int i = 0; i < nswap; i++) swe[i].ste_path = path;
nswap = swapctl(SC_LIST, swt);
swe = &(swt->swt_ent[0]);
stp = sfp = 0;
for (int i = 0; i < nswap; i++) {
if ((swe[i].ste_flags & ST_INDEL) || (swe[i].ste_flags & ST_DOINGDEL))
continue;
stp += swe->ste_pages;
sfp += swe->ste_free;
}
free(swt);
info.swapfree = pagetok(sfp);
info.swapmax = pagetok(stp);
info.swap = info.swapmax - info.swapfree;
return 0;
}
int check_mount(struct text_object *obj) {
/* stub */
(void)obj;
return 0;
}
double get_battery_perct_bar(struct text_object *obj) {
/* Not implemented */
(void)obj;
return 100.0;
}
double get_acpi_temperature(int fd) {
/* Not implemented */
(void)fd;
return 0.0;
}
int update_total_processes(void) {
kstat_named_t *knp = get_kstat("unix", -1, "system_misc", "nproc");
if (knp != nullptr) info.procs = knp->value.ui32;
return 0;
}
void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item) {
/* Not implemented */
}
int update_running_processes(void) {
/* There is no kstat for this, see update_proc_entry() */
return 0;
}
int update_net_stats(void) {
struct ifconf ifc;
int sockfd;
char buf[1024];
double d = current_update_time - last_update_time;
if (d < 0.1) return 0;
/* Find all active net interfaces */
if ((sockfd = socket(AF_INET, SOCK_DGRAM, 0)) < 0) {
NORM_ERR("cannot create socket: %s", strerror(errno));
return 0;
}
ifc.ifc_buf = buf;
ifc.ifc_len = sizeof(buf);
if (ioctl(sockfd, SIOCGIFCONF, &ifc) < 0) {
NORM_ERR("ioctl(SIOCGIFCONF) failed: %s", strerror(errno));
(void)close(sockfd);
return 0;
}
(void)close(sockfd);
/* Collect stats for all active interfaces */
for (int i = 0; i < ifc.ifc_len / sizeof(struct ifreq); i++) {
struct net_stat *ns;
struct ifreq *ifr = &ifc.ifc_req[i];
long long last_recv, last_trans;
long long r, t;
kstat_named_t *knp;
ns = get_net_stat((const char *)ifr->ifr_name, nullptr, NULL);
ns->up = 1;
memcpy(&(ns->addr), &ifr->ifr_addr, sizeof(ifr->ifr_addr));
/* Skip the loopback interface, it does not have kstat data */
if (ifr->ifr_flags & IFF_LOOPBACK || strcmp(ifr->ifr_name, "lo0") == 0)
continue;
last_recv = ns->recv;
last_trans = ns->trans;
/* Get received bytes */
knp = get_kstat("link", -1, ifr->ifr_name, "rbytes");
if (knp == nullptr) {
NORM_ERR("cannot read rbytes for %s\n", ifr->ifr_name);
continue;
}
r = (long long)knp->value.ui32;
if (r <= ns->last_read_recv) {
ns->recv += ((long long)4294967295U - ns->last_read_recv) + r;
} else {
ns->recv += (r - ns->last_read_recv);
}
ns->last_read_recv = r;
/* Get transceived bytes */
knp = get_kstat("link", -1, ifr->ifr_name, "obytes");
if (knp == nullptr) {
NORM_ERR("cannot read obytes for %s\n", ifr->ifr_name);
continue;
}
t = (long long)knp->value.ui32;
if (t < ns->last_read_trans) {
ns->trans += ((long long)4294967295U - ns->last_read_trans) + t;
} else {
ns->trans += (t - ns->last_read_trans);
}
ns->last_read_trans = t;
ns->recv_speed = (ns->recv - last_recv) / d;
ns->trans_speed = (ns->trans - last_trans) / d;
}
return 0;
}
int update_cpu_usage(void) {
static int last_cpu_cnt = 0;
static int *last_cpu_use = nullptr;
double d = current_update_time - last_update_time;
double total_cpu_usage = 0;
int cpu;
if (d < 0.1) return 0;
update_kstat();
info.cpu_count = sysconf(_SC_NPROCESSORS_ONLN);
/* (Re)allocate the array with previous values */
if (last_cpu_cnt != info.cpu_count || last_cpu_use == nullptr) {
last_cpu_use =
(int *)realloc(last_cpu_use, (info.cpu_count + 1) * sizeof(int));
last_cpu_cnt = info.cpu_count;
if (last_cpu_use == nullptr) return 0;
}
info.cpu_usage = (float *)malloc((info.cpu_count + 1) * sizeof(float));
pthread_mutex_lock(&kstat_mtx);
for (cpu = 1; cpu <= info.cpu_count; cpu++) {
char stat_name[PATH_MAX];
unsigned long cpu_user, cpu_nice, cpu_system, cpu_idle;
unsigned long cpu_use;
cpu_stat_t *cs;
kstat_t *ksp;
snprintf(stat_name, PATH_MAX, "cpu_stat%d", cpu - 1);
ksp = kstat_lookup(kstat, (char *)"cpu_stat", cpu - 1, stat_name);
if (ksp == nullptr) continue;
if (kstat_read(kstat, ksp, nullptr) == -1) continue;
cs = (cpu_stat_t *)ksp->ks_data;
cpu_idle = cs->cpu_sysinfo.cpu[CPU_IDLE];
cpu_user = cs->cpu_sysinfo.cpu[CPU_USER];
cpu_nice = cs->cpu_sysinfo.cpu[CPU_WAIT];
cpu_system = cs->cpu_sysinfo.cpu[CPU_KERNEL];
cpu_use = cpu_user + cpu_nice + cpu_system;
info.cpu_usage[cpu] = (double)(cpu_use - last_cpu_use[cpu]) / d / 100.0;
total_cpu_usage += info.cpu_usage[cpu];
last_cpu_use[cpu] = cpu_use;
}
pthread_mutex_unlock(&kstat_mtx);
info.cpu_usage[0] = total_cpu_usage / info.cpu_count;
return 0;
}
void free_cpu(struct text_object *) { /* no-op */
}
void update_proc_entry(struct process *p) {
psinfo_t proc;
int fd;
char pfn[PATH_MAX];
snprintf(pfn, PATH_MAX, "/proc/%d/psinfo", p->pid);
/* Ignore errors here as the process can be gone */
if ((fd = open(pfn, O_RDONLY)) < 0) return;
if (pread(fd, &proc, sizeof(psinfo_t), 0) != sizeof(psinfo_t)) {
(void)close(fd);
return;
}
(void)close(fd);
free_and_zero(p->name);
free_and_zero(p->basename);
p->name = strndup(proc.pr_fname, text_buffer_size.get(*::state));
p->basename = strndup(proc.pr_fname, text_buffer_size.get(*::state));
p->uid = proc.pr_uid;
/* see proc(4) */
p->amount = (double)proc.pr_pctcpu / (double)0x8000 * 100.0;
p->rss = proc.pr_rssize * 1024; /* to bytes */
p->vsize = proc.pr_size * 1024; /* to bytes */
p->total_cpu_time = proc.pr_time.tv_sec * 100; /* to hundredths of secs */
if (proc.pr_lwp.pr_sname == 'O' || proc.pr_lwp.pr_sname == 'R')
info.run_procs++;
p->time_stamp = g_time;
}
void get_top_info(void) {
DIR *dir;
struct dirent *entry;
if (!(dir = opendir("/proc"))) { return; }
info.run_procs = 0;
while ((entry = readdir(dir))) {
pid_t pid;
if (entry == nullptr) break;
if (sscanf(entry->d_name, "%u", &pid) != 1) continue;
update_proc_entry(get_process(pid));
}
(void)closedir(dir);
}
/*
* Because Solaris systems often have 100s or 1000s of disks, we don't collect
* data for all of them but only for those mentioned in conkyrc.
* Instead of disk's special file in SVR4 format, we use the driver name and
* and the instance number to specify the disk or partition. For example: sd0,
* ssd3, or sd5,b.
*/
int update_diskio(void) {
unsigned int tot_read = 0;
unsigned int tot_written = 0;
update_kstat();
pthread_mutex_lock(&kstat_mtx);
for (struct diskio_stat *cur = &stats; cur; cur = cur->next) {
unsigned int read, written;
kstat_io_t *ksio;
kstat_t *ksp;
if (cur->dev == nullptr) continue;
if ((ksp = kstat_lookup(kstat, nullptr, -1, cur->dev)) == NULL) continue;
if (kstat_read(kstat, ksp, nullptr) == -1) continue;
ksio = (kstat_io_t *)ksp->ks_data;
tot_read += read = (unsigned int)(ksio->nread / 512);
tot_written += written = (unsigned int)(ksio->nwritten / 512);
update_diskio_values(cur, read, written);
}
update_diskio_values(&stats, tot_read, tot_written);
pthread_mutex_unlock(&kstat_mtx);
return 0;
}
void get_battery_short_status(char *buffer, unsigned int n, const char *bat) {
/* Not implemented */
(void)bat;
if (buffer && n > 0) memset(buffer, 0, n);
}
void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) {
/* Not implemented */
if (p_client_buffer && client_buffer_size > 0)
memset(p_client_buffer, 0, client_buffer_size);
}
void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size,
const char *adapter) {
/* Not implemented */
if (p_client_buffer && client_buffer_size > 0)
memset(p_client_buffer, 0, client_buffer_size);
}
int get_battery_perct(const char *bat) {
/* Not implemented */
(void)bat;
return 1;
}
int get_entropy_poolsize(unsigned int *val) {
/* Not implemented */
(void)val;
return 1;
}
char get_freq(char *p_client_buffer, size_t client_buffer_size,
const char *p_format, int divisor, unsigned int cpu) {
char stat_name[PATH_MAX];
kstat_named_t *knp;
snprintf(stat_name, PATH_MAX, "cpu_info%d", cpu - 1);
knp = get_kstat("cpu_info", cpu - 1, stat_name, "current_clock_Hz");
if (knp == nullptr) return 0;
snprintf(p_client_buffer, client_buffer_size, p_format,
(float)knp->value.ui32 / divisor / 1000000.0);
return 1;
}
int update_uptime(void) {
kstat_named_t *knp;
knp = get_kstat("unix", -1, "system_misc", "boot_time");
if (knp == nullptr) return 0;
info.uptime = time(nullptr) - knp->value.ui32;
return 1;
}
int open_acpi_temperature(const char *name) {
/* Not implemented */
(void)name;
return 1;
}
int get_entropy_avail(unsigned int *val) {
/* Not implemented */
(void)val;
return 1;
}
int update_load_average(void) {
double load[3];
getloadavg(load, 3);
info.loadavg[0] = (float)load[0];
info.loadavg[1] = (float)load[1];
info.loadavg[2] = (float)load[2];
return 0;
}
void get_cpu_count(void) {
kstat_named_t *knp = get_kstat("unix", -1, "system_misc", "ncpus");
if (knp != nullptr) info.cpu_count = knp->value.ui32;
}