1
0
mirror of https://github.com/Llewellynvdm/conky.git synced 2024-10-02 15:09:07 +00:00
conky/src/freebsd.c
Phil Sutter 44f76f4876 drop leftover freq_dynamic code in freebsd.c and openbsd.c
As the comment states, those functions were originally copied from
linux.c; in fact just the code which has been removed due to licensing
issues.
2009-11-16 19:41:06 +01:00

922 lines
21 KiB
C

/* -*- mode: c; c-basic-offset: 4; tab-width: 4; indent-tabs-mode: t -*-
* vim: ts=4 sw=4 noet ai cindent syntax=c
*
* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2005-2009 Brenden Matthews, Philip Kovacs, et. al.
* (see AUTHORS)
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include <sys/ioctl.h>
#include <sys/dkstat.h>
#include <sys/param.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/user.h>
#include <net/if.h>
#include <net/if_mib.h>
#include <net/if_media.h>
#include <net/if_var.h>
#include <devstat.h>
#include <ifaddrs.h>
#include <limits.h>
#include <unistd.h>
#include <dev/wi/if_wavelan_ieee.h>
#include <dev/acpica/acpiio.h>
#include "conky.h"
#include "freebsd.h"
#include "logging.h"
#include "net_stat.h"
#include "top.h"
#include "diskio.h"
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
#define KELVTOC(x) ((x - 2732) / 10.0)
#define MAXSHOWDEVS 16
#if 0
#define FREEBSD_DEBUG
#endif
__attribute__((gnu_inline)) inline void
proc_find_top(struct process **cpu, struct process **mem);
static short cpu_setup = 0;
static int getsysctl(const char *name, void *ptr, size_t len)
{
size_t nlen = len;
if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
return -1;
}
if (nlen != len && errno == ENOMEM) {
return -1;
}
return 0;
}
struct ifmibdata *data = NULL;
size_t len = 0;
static int swapmode(unsigned long *retavail, unsigned long *retfree)
{
int n;
unsigned long pagesize = getpagesize();
struct kvm_swap swapary[1];
*retavail = 0;
*retfree = 0;
#define CONVERT(v) ((quad_t)(v) * (pagesize / 1024))
n = kvm_getswapinfo(kd, swapary, 1, 0);
if (n < 0 || swapary[0].ksw_total == 0) {
return 0;
}
*retavail = CONVERT(swapary[0].ksw_total);
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
n = (int) ((double) swapary[0].ksw_used * 100.0 /
(double) swapary[0].ksw_total);
return n;
}
void prepare_update(void)
{
}
void update_uptime(void)
{
int mib[2] = { CTL_KERN, KERN_BOOTTIME };
struct timeval boottime;
time_t now;
size_t size = sizeof(boottime);
if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1)
&& (boottime.tv_sec != 0)) {
time(&now);
info.uptime = now - boottime.tv_sec;
} else {
fprintf(stderr, "Could not get uptime\n");
info.uptime = 0;
}
}
int check_mount(char *s)
{
struct statfs *mntbuf;
int i, mntsize;
mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
for (i = mntsize - 1; i >= 0; i--) {
if (strcmp(mntbuf[i].f_mntonname, s) == 0) {
return 1;
}
}
return 0;
}
void update_meminfo(void)
{
u_int total_pages, inactive_pages, free_pages;
unsigned long swap_avail, swap_free;
int pagesize = getpagesize();
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_page_count\"\n");
}
if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_free_count\"\n");
}
if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_inactive_count\"\n");
}
info.memmax = total_pages * (pagesize >> 10);
info.mem = (total_pages - free_pages - inactive_pages) * (pagesize >> 10);
info.memeasyfree = info.memfree = info.memmax - info.mem;
if ((swapmode(&swap_avail, &swap_free)) >= 0) {
info.swapmax = swap_avail;
info.swap = (swap_avail - swap_free);
info.swapfree = swap_free;
} else {
info.swapmax = 0;
info.swap = 0;
info.swapfree = 0;
}
}
void update_net_stats(void)
{
struct net_stat *ns;
double delta;
long long r, t, last_recv, last_trans;
struct ifaddrs *ifap, *ifa;
struct if_data *ifd;
/* get delta */
delta = current_update_time - last_update_time;
if (delta <= 0.0001) {
return;
}
if (getifaddrs(&ifap) < 0) {
return;
}
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *) ifa->ifa_name, NULL, NULL);
if (ifa->ifa_flags & IFF_UP) {
struct ifaddrs *iftmp;
ns->up = 1;
last_recv = ns->recv;
last_trans = ns->trans;
if (ifa->ifa_addr->sa_family != AF_LINK) {
continue;
}
for (iftmp = ifa->ifa_next;
iftmp != NULL && strcmp(ifa->ifa_name, iftmp->ifa_name) == 0;
iftmp = iftmp->ifa_next) {
if (iftmp->ifa_addr->sa_family == AF_INET) {
memcpy(&(ns->addr), iftmp->ifa_addr,
iftmp->ifa_addr->sa_len);
}
}
ifd = (struct if_data *) ifa->ifa_data;
r = ifd->ifi_ibytes;
t = ifd->ifi_obytes;
if (r < ns->last_read_recv) {
ns->recv += ((long long) 4294967295U - ns->last_read_recv) + r;
} else {
ns->recv += (r - ns->last_read_recv);
}
ns->last_read_recv = r;
if (t < ns->last_read_trans) {
ns->trans += ((long long) 4294967295U -
ns->last_read_trans) + t;
} else {
ns->trans += (t - ns->last_read_trans);
}
ns->last_read_trans = t;
/* calculate speeds */
ns->recv_speed = (ns->recv - last_recv) / delta;
ns->trans_speed = (ns->trans - last_trans) / delta;
} else {
ns->up = 0;
}
}
freeifaddrs(ifap);
}
void update_total_processes(void)
{
int n_processes;
kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
info.procs = n_processes;
}
void update_running_processes(void)
{
struct kinfo_proc *p;
int n_processes;
int i, cnt = 0;
p = kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
for (i = 0; i < n_processes; i++) {
#if (__FreeBSD__ < 5) && (__FreeBSD_kernel__ < 5)
if (p[i].kp_proc.p_stat == SRUN) {
#else
if (p[i].ki_stat == SRUN) {
#endif
cnt++;
}
}
info.run_procs = cnt;
}
struct cpu_load_struct {
unsigned long load[5];
};
struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} };
long cpu_used, oldtotal, oldused;
void get_cpu_count(void)
{
/* int cpu_count = 0; */
/* XXX: FreeBSD doesn't allow to get per CPU load stats on SMP machines.
* It's possible to get a CPU count, but as we fulfill only
* info.cpu_usage[0], it's better to report there's only one CPU.
* It should fix some bugs (e.g. cpugraph) */
#if 0
if (GETSYSCTL("hw.ncpu", cpu_count) == 0) {
info.cpu_count = cpu_count;
}
#endif
info.cpu_count = 1;
info.cpu_usage = malloc(info.cpu_count * sizeof(float));
if (info.cpu_usage == NULL) {
CRIT_ERR(NULL, NULL, "malloc");
}
}
/* XXX: SMP support */
void update_cpu_usage(void)
{
long used, total;
long cp_time[CPUSTATES];
size_t cp_len = sizeof(cp_time);
/* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */
if ((cpu_setup == 0) || (!info.cpu_usage)) {
get_cpu_count();
cpu_setup = 1;
}
if (sysctlbyname("kern.cp_time", &cp_time, &cp_len, NULL, 0) < 0) {
fprintf(stderr, "Cannot get kern.cp_time");
}
fresh.load[0] = cp_time[CP_USER];
fresh.load[1] = cp_time[CP_NICE];
fresh.load[2] = cp_time[CP_SYS];
fresh.load[3] = cp_time[CP_IDLE];
fresh.load[4] = cp_time[CP_IDLE];
used = fresh.load[0] + fresh.load[1] + fresh.load[2];
total = fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3];
if ((total - oldtotal) != 0) {
info.cpu_usage[0] = ((double) (used - oldused)) /
(double) (total - oldtotal);
} else {
info.cpu_usage[0] = 0;
}
oldused = used;
oldtotal = total;
}
void update_load_average(void)
{
double v[3];
getloadavg(v, 3);
info.loadavg[0] = (double) v[0];
info.loadavg[1] = (double) v[1];
info.loadavg[2] = (double) v[2];
}
double get_acpi_temperature(int fd)
{
int temp;
(void)fd;
if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) {
fprintf(stderr,
"Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n");
return 0.0;
}
return KELVTOC(temp);
}
static void get_battery_stats(int *battime, int *batcapacity, int *batstate, int *ac) {
if (battime && GETSYSCTL("hw.acpi.battery.time", *battime)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.time\"\n");
}
if (batcapacity && GETSYSCTL("hw.acpi.battery.life", *batcapacity)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.life\"\n");
}
if (batstate && GETSYSCTL("hw.acpi.battery.state", *batstate)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.state\"\n");
}
if (ac && GETSYSCTL("hw.acpi.acline", *ac)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n");
}
}
void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item)
{
int battime, batcapacity, batstate, ac;
(void)bat;
get_battery_stats(&battime, &batcapacity, &batstate, &ac);
if (batstate != 1 && batstate != 2 && batstate != 0 && batstate != 7)
fprintf(stderr, "Unknown battery state %d!\n", batstate);
else if (batstate != 1 && ac == 0)
fprintf(stderr, "Battery charging while not on AC!\n");
else if (batstate == 1 && ac == 1)
fprintf(stderr, "Battery discharing while on AC!\n");
switch (item) {
case BATTERY_TIME:
if (batstate == 1 && battime != -1)
snprintf(buf, n, "%d:%2.2d", battime / 60, battime % 60);
break;
case BATTERY_STATUS:
if (batstate == 1) // Discharging
snprintf(buf, n, "remaining %d%%", batcapacity);
else
snprintf(buf, n, batstate == 2 ? "charging (%d%%)" :
(batstate == 7 ? "absent/on AC" : "charged (%d%%)"),
batcapacity);
break;
default:
fprintf(stderr, "Unknown requested battery stat %d\n", item);
}
}
static int check_bat(const char *bat)
{
int batnum, numbatts;
char *endptr;
if (GETSYSCTL("hw.acpi.battery.units", numbatts)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.units\"\n");
return -1;
}
if (numbatts <= 0) {
fprintf(stderr, "No battery unit detected\n");
return -1;
}
if (!bat || (batnum = strtol(bat, &endptr, 10)) < 0 ||
bat == endptr || batnum > numbatts) {
fprintf(stderr, "Wrong battery unit %s requested\n", bat ? bat : "");
return -1;
}
return batnum;
}
int get_battery_perct(const char *bat)
{
union acpi_battery_ioctl_arg battio;
int batnum, acpifd;
int designcap, lastfulcap, batperct;
if ((battio.unit = batnum = check_bat(bat)) < 0)
return 0;
if ((acpifd = open("/dev/acpi", O_RDONLY)) < 0) {
fprintf(stderr, "Can't open ACPI device\n");
return 0;
}
if (ioctl(acpifd, ACPIIO_BATT_GET_BIF, &battio) == -1) {
fprintf(stderr, "Unable to get info for battery unit %d\n", batnum);
return 0;
}
close(acpifd);
designcap = battio.bif.dcap;
lastfulcap = battio.bif.lfcap;
batperct = (designcap > 0 && lastfulcap > 0) ?
(int) (((float) lastfulcap / designcap) * 100) : 0;
return batperct > 100 ? 100 : batperct;
}
int get_battery_perct_bar(const char *bar)
{
int batperct = get_battery_perct(bar);
return (int)(batperct * 2.56 - 1);
}
int open_acpi_temperature(const char *name)
{
(void)name;
/* Not applicable for FreeBSD. */
return 0;
}
void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size)
{
int state;
if (!p_client_buffer || client_buffer_size <= 0) {
return;
}
if (GETSYSCTL("hw.acpi.acline", state)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n");
return;
}
if (state) {
strncpy(p_client_buffer, "Running on AC Power", client_buffer_size);
} else {
strncpy(p_client_buffer, "Running on battery", client_buffer_size);
}
}
void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size)
{
/* not implemented */
if (p_client_buffer && client_buffer_size > 0) {
memset(p_client_buffer, 0, client_buffer_size);
}
}
/* void */
char get_freq(char *p_client_buffer, size_t client_buffer_size, const char *p_format,
int divisor, unsigned int cpu)
{
int freq;
char *freq_sysctl;
freq_sysctl = (char *) calloc(16, sizeof(char));
if (freq_sysctl == NULL) {
exit(-1);
}
snprintf(freq_sysctl, 16, "dev.cpu.%d.freq", (cpu - 1));
if (!p_client_buffer || client_buffer_size <= 0 || !p_format
|| divisor <= 0) {
return 0;
}
if (GETSYSCTL(freq_sysctl, freq) == 0) {
snprintf(p_client_buffer, client_buffer_size, p_format,
(float) freq / divisor);
} else {
snprintf(p_client_buffer, client_buffer_size, p_format, 0.0f);
}
free(freq_sysctl);
return 1;
}
void update_top(void)
{
proc_find_top(info.cpu, info.memu);
}
#if 0
void update_wifi_stats(void)
{
struct ifreq ifr; /* interface stats */
struct wi_req wireq;
struct net_stat *ns;
struct ifaddrs *ifap, *ifa;
struct ifmediareq ifmr;
int s;
/* Get iface table */
if (getifaddrs(&ifap) < 0) {
return;
}
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *) ifa->ifa_name, NULL, NULL);
s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
/* Get media type */
bzero(&ifmr, sizeof(ifmr));
strlcpy(ifmr.ifm_name, ifa->ifa_name, IFNAMSIZ);
if (ioctl(s, SIOCGIFMEDIA, (caddr_t) &ifmr) < 0) {
close(s);
return;
}
/* We can monitor only wireless interfaces
* which are not in hostap mode */
if ((ifmr.ifm_active & IFM_IEEE80211)
&& !(ifmr.ifm_active & IFM_IEEE80211_HOSTAP)) {
/* Get wi status */
bzero(&ifr, sizeof(ifr));
strlcpy(ifr.ifr_name, ifa->ifa_name, IFNAMSIZ);
wireq.wi_type = WI_RID_COMMS_QUALITY;
wireq.wi_len = WI_MAX_DATALEN;
ifr.ifr_data = (void *) &wireq;
if (ioctl(s, SIOCGWAVELAN, (caddr_t) &ifr) < 0) {
perror("ioctl (getting wi status)");
exit(1);
}
/* wi_val[0] = quality
* wi_val[1] = signal
* wi_val[2] = noise */
ns->linkstatus = (int) wireq.wi_val[1];
}
cleanup:
close(s);
}
}
#endif
void update_diskio(void)
{
int devs_count, num_selected, num_selections, dn;
struct device_selection *dev_select = NULL;
long select_generation;
static struct statinfo statinfo_cur;
char device_name[text_buffer_size];
struct diskio_stat *cur;
unsigned int reads, writes;
unsigned int total_reads = 0, total_writes = 0;
memset(&statinfo_cur, 0, sizeof(statinfo_cur));
statinfo_cur.dinfo = (struct devinfo *)calloc(1, sizeof(struct devinfo));
stats.current = stats.current_read = stats.current_write = 0;
if (devstat_getdevs(NULL, &statinfo_cur) < 0) {
free(statinfo_cur.dinfo);
return;
}
devs_count = statinfo_cur.dinfo->numdevs;
if (devstat_selectdevs(&dev_select, &num_selected, &num_selections,
&select_generation, statinfo_cur.dinfo->generation,
statinfo_cur.dinfo->devices, devs_count, NULL, 0, NULL, 0,
DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) {
for (dn = 0; dn < devs_count; dn++) {
int di;
struct devstat *dev;
di = dev_select[dn].position;
dev = &statinfo_cur.dinfo->devices[di];
snprintf(device_name, text_buffer_size, "%s%d",
dev_select[dn].device_name, dev_select[dn].unit_number);
total_reads += (reads = dev->bytes[DEVSTAT_READ] / 512);
total_writes += (writes = dev->bytes[DEVSTAT_WRITE] / 512);
for (cur = stats.next; cur; cur = cur->next) {
if (cur->dev && !strcmp(device_name, cur->dev)) {
update_diskio_values(cur, reads, writes);
break;
}
}
}
update_diskio_values(&stats, total_reads, total_writes);
free(dev_select);
}
free(statinfo_cur.dinfo);
}
/* While topless is obviously better, top is also not bad. */
int comparecpu(const void *a, const void *b)
{
if (((const struct process *)a)->amount > ((const struct process *)b)->amount) {
return -1;
} else if (((const struct process *)a)->amount < ((const struct process *)b)->amount) {
return 1;
} else {
return 0;
}
}
int comparemem(const void *a, const void *b)
{
if (((const struct process *)a)->rss > ((const struct process *)b)->rss) {
return -1;
} else if (((const struct process *)a)->rss < ((const struct process *)b)->rss) {
return 1;
} else {
return 0;
}
}
__attribute__((gnu_inline)) inline void
proc_find_top(struct process **cpu, struct process **mem)
{
struct kinfo_proc *p;
int n_processes;
int i, j = 0;
struct process *processes;
int total_pages;
/* we get total pages count again to be sure it is up to date */
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages) != 0) {
CRIT_ERR(NULL, NULL, "Cannot read sysctl \"vm.stats.vm.v_page_count\"");
}
p = kvm_getprocs(kd, KERN_PROC_PROC, 0, &n_processes);
processes = malloc(n_processes * sizeof(struct process));
for (i = 0; i < n_processes; i++) {
if (!((p[i].ki_flag & P_SYSTEM)) && p[i].ki_comm != NULL) {
processes[j].pid = p[i].ki_pid;
processes[j].name = strndup(p[i].ki_comm, text_buffer_size);
processes[j].amount = 100.0 * p[i].ki_pctcpu / FSCALE;
processes[j].vsize = p[i].ki_size;
processes[j].rss = (p[i].ki_rssize * getpagesize());
j++;
}
}
qsort(processes, j - 1, sizeof(struct process), comparemem);
for (i = 0; i < 10 && i < n_processes; i++) {
struct process *tmp, *ttmp;
tmp = malloc(sizeof(struct process));
tmp->pid = processes[i].pid;
tmp->amount = processes[i].amount;
tmp->name = strndup(processes[i].name, text_buffer_size);
tmp->rss = processes[i].rss;
tmp->vsize = processes[i].vsize;
ttmp = mem[i];
mem[i] = tmp;
if (ttmp != NULL) {
free(ttmp->name);
free(ttmp);
}
}
qsort(processes, j - 1, sizeof(struct process), comparecpu);
for (i = 0; i < 10 && i < n_processes; i++) {
struct process *tmp, *ttmp;
tmp = malloc(sizeof(struct process));
tmp->pid = processes[i].pid;
tmp->amount = processes[i].amount;
tmp->name = strndup(processes[i].name, text_buffer_size);
tmp->rss = processes[i].rss;
tmp->vsize = processes[i].vsize;
ttmp = cpu[i];
cpu[i] = tmp;
if (ttmp != NULL) {
free(ttmp->name);
free(ttmp);
}
}
#if defined(FREEBSD_DEBUG)
printf("=====\nmem\n");
for (i = 0; i < 10; i++) {
printf("%d: %s(%d) %ld %ld\n", i, mem[i]->name,
mem[i]->pid, mem[i]->vsize, mem[i]->rss);
}
#endif
for (i = 0; i < j; i++) {
free(processes[i].name);
}
free(processes);
}
#if defined(i386) || defined(__i386__)
#define APMDEV "/dev/apm"
#define APM_UNKNOWN 255
int apm_getinfo(int fd, apm_info_t aip)
{
if (ioctl(fd, APMIO_GETINFO, aip) == -1) {
return -1;
}
return 0;
}
char *get_apm_adapter(void)
{
int fd;
struct apm_info a_info;
char *out;
out = (char *) calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if (apm_getinfo(fd, &a_info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
switch (a_info.ai_acline) {
case 0:
strncpy(out, "off-line", 16);
return out;
break;
case 1:
if (a_info.ai_batt_stat == 3) {
strncpy(out, "charging", 16);
return out;
} else {
strncpy(out, "on-line", 16);
return out;
}
break;
default:
strncpy(out, "unknown", 16);
return out;
break;
}
}
char *get_apm_battery_life(void)
{
int fd;
u_int batt_life;
struct apm_info a_info;
char *out;
out = (char *) calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if (apm_getinfo(fd, &a_info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_life = a_info.ai_batt_life;
if (batt_life == APM_UNKNOWN) {
strncpy(out, "unknown", 16);
} else if (batt_life <= 100) {
snprintf(out, 16, "%d%%", batt_life);
return out;
} else {
strncpy(out, "ERR", 16);
}
return out;
}
char *get_apm_battery_time(void)
{
int fd;
int batt_time;
int h, m, s;
struct apm_info a_info;
char *out;
out = (char *) calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if (apm_getinfo(fd, &a_info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_time = a_info.ai_batt_time;
if (batt_time == -1) {
strncpy(out, "unknown", 16);
} else {
h = batt_time;
s = h % 60;
h /= 60;
m = h % 60;
h /= 60;
snprintf(out, 16, "%2d:%02d:%02d", h, m, s);
}
return out;
}
#endif
void get_battery_short_status(char *buffer, unsigned int n, const char *bat)
{
get_battery_stuff(buffer, n, bat, BATTERY_STATUS);
if (0 == strncmp("charging", buffer, 8)) {
buffer[0] = 'C';
memmove(buffer + 1, buffer + 8, n - 8);
} else if (0 == strncmp("discharging", buffer, 11)) {
buffer[0] = 'D';
memmove(buffer + 1, buffer + 11, n - 11);
} else if (0 == strncmp("absent/on AC", buffer, 12)) {
buffer[0] = 'A';
memmove(buffer + 1, buffer + 12, n - 12);
}
}
int get_entropy_avail(unsigned int *val)
{
/* Not applicable for FreeBSD as it uses the yarrow prng. */
(void)val;
return 1;
}
int get_entropy_poolsize(unsigned int *val)
{
/* Not applicable for FreeBSD as it uses the yarrow prng. */
(void)val;
return 1;
}
/* empty stub so conky links */
void free_all_processes(void)
{
}