1
0
mirror of https://github.com/Llewellynvdm/conky.git synced 2024-06-10 11:12:21 +00:00
conky/src/gradient.cc
bi4k8 2fb7d47039
gradients: fix saturation/luma calculations for 32-bit systems (#1470)
* gradients: fix saturation calculation for 32-bit systems

this multiplication has two 512 scale factors as well as 360 and a color difference of up to 255. as such, it can overflow 32 bits, which results in an incorrect saturation value being computed

cast to uint64_t so we have enough bits to multiply without overflow

* gradients: fix luma calculation for 32-bit systems

this multiplication has 0-255 colors at 512 scale factor being multiplied by 10000 (summed across components), then multiplied by 360

this multiplication (360 * 10000 * 255 * 512) overflows a long on 32-bit systems, computing the wrong luma value

cast to uint64_t so we have enough bits to multiply without overflow

---------

Co-authored-by: bi4k8 <bi4k8@github>
2023-03-25 08:28:10 -04:00

276 lines
7.7 KiB
C++

/*
*
* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2004, Hannu Saransaari and Lauri Hakkarainen
* Copyright (c) 2005-2021 Brenden Matthews, Philip Kovacs, et. al.
* (see AUTHORS)
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "gradient.h"
#include "colours.h"
#include "conky.h"
#include "logging.h"
namespace conky {
gradient_factory::gradient_factory(int width, Colour first_colour,
Colour last_colour) {
// Make sure the width is always at least 2
this->width = std::max(2, width);
this->first_colour = first_colour;
this->last_colour = last_colour;
}
void gradient_factory::convert_from_rgb(Colour original, long *array) {
long scaled[3];
scaled[0] = original.red * SCALE;
scaled[1] = original.green * SCALE;
scaled[2] = original.blue * SCALE;
convert_from_scaled_rgb(scaled, array);
}
Colour gradient_factory::convert_to_rgb(long *const array) {
long scaled_rgb[3];
Colour c;
convert_to_scaled_rgb(array, scaled_rgb);
c.red = scaled_rgb[0] / SCALE;
c.green = scaled_rgb[1] / SCALE;
c.blue = scaled_rgb[2] / SCALE;
return c;
}
gradient_factory::colour_array gradient_factory::create_gradient() {
colour_array colours(new Colour[width]);
long first_converted[3];
long last_converted[3];
long diff[3], delta[3];
colours[0] = first_colour;
colours[width - 1] = last_colour;
convert_from_rgb(first_colour, first_converted);
convert_from_rgb(last_colour, last_converted);
for (int i = 0; i < 3; i++) {
diff[i] = last_converted[i] - first_converted[i];
}
fix_diff(diff);
for (int i = 0; i < 3; i++) { delta[i] = diff[i] / (width - 1); }
for (int i = 1; i < width - 1; i++) {
for (int k = 0; k < 3; k++) { first_converted[k] += delta[k]; }
colours[i] = convert_to_rgb(first_converted);
}
return colours;
}
long gradient_factory::get_hue(long *const rgb, long chroma, long value) {
if (chroma == 0) { return 0; }
long diff, offset;
if (rgb[0] == value) {
diff = rgb[1] - rgb[2];
offset = 0;
} else if (rgb[1] == value) {
diff = rgb[2] - rgb[0];
offset = SCALE2;
} else {
diff = rgb[0] - rgb[1];
offset = SCALE4;
}
long h = (SCALE * diff) / chroma + offset;
return 60L * ((SCALE6 + h) % SCALE6);
}
long gradient_factory::get_intermediate(long hue, long chroma) {
long h = hue / 60L;
long multiplier = SCALE - std::abs(h % SCALE2 - SCALE);
return (chroma * multiplier) / SCALE;
}
/* rgb_gradient_factory */
void rgb_gradient_factory::convert_from_scaled_rgb(long *const scaled,
long *target) {
target[0] = scaled[0] * 360L;
target[1] = scaled[1] * 360L;
target[2] = scaled[2] * 360L;
}
void rgb_gradient_factory::convert_to_scaled_rgb(long *const target,
long *scaled) {
scaled[0] = target[0] / 360L;
scaled[1] = target[1] / 360L;
scaled[2] = target[2] / 360L;
}
/* rgb_gradient_factory */
namespace {
long get_value(long *const rgb) {
if (rgb[0] > rgb[1]) { return std::max(rgb[0], rgb[2]); }
return std::max(rgb[1], rgb[2]);
}
long get_minimum(long *const rgb) {
if (rgb[0] < rgb[1]) { return std::min(rgb[0], rgb[2]); }
return std::min(rgb[1], rgb[2]);
}
} // namespace
/* hsv_gradient_factory */
void hsv_gradient_factory::fix_diff(long *diff) {
if (diff[0] > SCALE180) {
diff[0] -= SCALE360;
} else if (diff[0] < -SCALE180) {
diff[0] += SCALE360;
}
}
void hsv_gradient_factory::convert_from_scaled_rgb(long *const scaled,
long *target) {
auto value = get_value(scaled);
auto minimum = get_minimum(scaled);
auto chroma = value - minimum;
long saturation = (SCALE360 * (uint64_t)chroma) / value;
target[0] = get_hue(scaled, chroma, value);
target[1] = saturation;
target[2] = value * 360L;
}
void hsv_gradient_factory::convert_to_scaled_rgb(long *const target,
long *scaled) {
auto hue = target[0] % SCALE360;
auto saturation = target[1] / 360L;
auto value = target[2] / 360L;
auto chroma = (saturation * value) / SCALE;
auto x = get_intermediate(hue, chroma);
scaled[0] = scaled[1] = scaled[2] = (value - chroma);
if (hue < SCALE60) {
scaled[0] += chroma;
scaled[1] += x;
} else if (hue < SCALE120) {
scaled[0] += x;
scaled[1] += chroma;
} else if (hue < SCALE180) {
scaled[1] += chroma;
scaled[2] += x;
} else if (hue < SCALE240) {
scaled[1] += x;
scaled[2] += chroma;
} else if (hue < SCALE300) {
scaled[2] += chroma;
scaled[0] += x;
} else {
scaled[2] += x;
scaled[0] += chroma;
}
}
/* hsv_gradient_factory */
namespace {
// Using Rec.2020 color space
// Y' = 0.2627 x R + 0.6780 x G + 0.0593 x B
long get_luma(long *const rgb) {
return 360L * (uint64_t)(2627L * rgb[0] + 6780L * rgb[1] + 593L * rgb[2]) / 10000L;
}
// Using Rec.2020 color space
// m = Y' - (0.2627 x R + 0.6780 x G + 0.0593 x B)
long get_minimum_from_luma(long luma, long r, long g, long b) {
return luma - (2627L * r + 6780L * g + 593L * b) / 10000L;
}
} // namespace
/* hcl_gradient_factory */
void hcl_gradient_factory::fix_diff(long *diff) {
if (diff[0] > SCALE180) {
diff[0] -= SCALE360;
} else if (diff[0] < -SCALE180) {
diff[0] += SCALE360;
}
}
void hcl_gradient_factory::convert_from_scaled_rgb(long *const scaled,
long *target) {
auto value = get_value(scaled);
auto minimum = get_minimum(scaled);
auto luma = get_luma(scaled);
auto chroma = value - minimum;
target[0] = get_hue(scaled, chroma, value);
target[1] = chroma * 360L;
target[2] = luma;
}
void hcl_gradient_factory::convert_to_scaled_rgb(long *const target,
long *scaled) {
auto hue = target[0] % SCALE360;
auto chroma = target[1] / 360L;
auto luma = target[2] / 360L;
auto x = get_intermediate(hue, chroma);
long m;
if (hue < SCALE60) {
m = get_minimum_from_luma(luma, chroma, x, 0);
scaled[0] = scaled[1] = scaled[2] = m;
scaled[0] += chroma;
scaled[1] += x;
} else if (hue < SCALE120) {
m = get_minimum_from_luma(luma, x, chroma, 0);
scaled[0] = scaled[1] = scaled[2] = m;
scaled[0] += x;
scaled[1] += chroma;
} else if (hue < SCALE180) {
m = get_minimum_from_luma(luma, 0, chroma, x);
scaled[0] = scaled[1] = scaled[2] = m;
scaled[1] += chroma;
scaled[2] += x;
} else if (hue < SCALE240) {
m = get_minimum_from_luma(luma, 0, x, chroma);
scaled[0] = scaled[1] = scaled[2] = m;
scaled[1] += x;
scaled[2] += chroma;
} else if (hue < SCALE300) {
m = get_minimum_from_luma(luma, x, 0, chroma);
scaled[0] = scaled[1] = scaled[2] = m;
scaled[2] += chroma;
scaled[0] += x;
} else {
m = get_minimum_from_luma(luma, chroma, 0, x);
scaled[0] = scaled[1] = scaled[2] = m;
scaled[2] += x;
scaled[0] += chroma;
}
}
/* hcl_gradient_factory */
} // namespace conky