1
0
mirror of https://github.com/Llewellynvdm/conky.git synced 2025-01-28 09:38:38 +00:00
conky/src/top.cc
2021-02-03 18:38:41 -06:00

656 lines
19 KiB
C++

/*
*
* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2005 Adi Zaimi, Dan Piponi <dan@tanelorn.demon.co.uk>,
* Dave Clark <clarkd@skynet.ca>
* Copyright (c) 2005-2019 Brenden Matthews, Philip Kovacs, et. al.
* (see AUTHORS)
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "top.h"
#include "logging.h"
#include "prioqueue.h"
/* hash table size - always a power of 2 */
#define HTABSIZE 256
struct process *first_process = nullptr;
unsigned long g_time = 0;
/* a simple hash table to speed up find_process() */
struct proc_hash_entry {
struct proc_hash_entry *next;
struct process *proc;
};
static struct proc_hash_entry proc_hash_table[HTABSIZE];
static void hash_process(struct process *p) {
struct proc_hash_entry *phe;
static char first_run = 1;
int bucket;
/* better make sure all next pointers are zero upon first access */
if (first_run != 0) {
memset(proc_hash_table, 0, sizeof(struct proc_hash_entry) * HTABSIZE);
first_run = 0;
}
/* get the bucket index */
bucket = p->pid & (HTABSIZE - 1);
/* insert a new element on bucket's top */
phe = static_cast<struct proc_hash_entry *>(
malloc(sizeof(struct proc_hash_entry)));
phe->proc = p;
phe->next = proc_hash_table[bucket].next;
proc_hash_table[bucket].next = phe;
}
static void unhash_process(struct process *p) {
struct proc_hash_entry *phe, *tmp;
/* get the bucket head */
phe = &proc_hash_table[p->pid & (HTABSIZE - 1)];
/* find the entry pointing to p and drop it */
while (phe->next != nullptr) {
if (phe->next->proc == p) {
tmp = phe->next;
phe->next = phe->next->next;
free(tmp);
return;
}
phe = phe->next;
}
}
static void __unhash_all_processes(struct proc_hash_entry *phe) {
if (phe->next != nullptr) { __unhash_all_processes(phe->next); }
free(phe->next);
}
static void unhash_all_processes() {
int i;
for (i = 0; i < HTABSIZE; i++) {
__unhash_all_processes(&proc_hash_table[i]);
proc_hash_table[i].next = nullptr;
}
}
struct process *get_first_process() {
return first_process;
}
void free_all_processes() {
struct process *next = nullptr, *pr = first_process;
while (pr != nullptr) {
next = pr->next;
free_and_zero(pr->name);
free_and_zero(pr->basename);
free(pr);
pr = next;
}
first_process = nullptr;
/* drop the whole hash table */
unhash_all_processes();
}
struct process *get_process_by_name(const char *name) {
struct process *p = first_process;
while (p != nullptr) {
/* Try matching against the full command line first. If that fails,
* fall back to the basename.
*/
if (((p->name != nullptr) && (strcmp(p->name, name) == 0)) ||
((p->basename != nullptr) && (strcmp(p->basename, name) == 0))) {
return p;
}
p = p->next;
}
return nullptr;
}
static struct process *find_process(pid_t pid) {
struct proc_hash_entry *phe;
phe = &proc_hash_table[pid & (HTABSIZE - 1)];
while (phe->next != nullptr) {
if (phe->next->proc->pid == pid) { return phe->next->proc; }
phe = phe->next;
}
return nullptr;
}
static struct process *new_process(pid_t pid) {
auto *p = static_cast<struct process *>(malloc(sizeof(struct process)));
/* Do stitching necessary for doubly linked list */
p->previous = nullptr;
p->next = first_process;
if (p->next != nullptr) { p->next->previous = p; }
first_process = p;
p->pid = pid;
p->name = nullptr;
p->basename = nullptr;
p->amount = 0;
p->user_time = 0;
p->total = 0;
p->kernel_time = 0;
p->previous_user_time = ULONG_MAX;
p->previous_kernel_time = ULONG_MAX;
p->total_cpu_time = 0;
p->vsize = 0;
p->rss = 0;
#ifdef BUILD_IOSTATS
p->read_bytes = 0;
p->previous_read_bytes = ULLONG_MAX;
p->write_bytes = 0;
p->previous_write_bytes = ULLONG_MAX;
p->io_perc = 0;
#endif /* BUILD_IOSTATS */
p->time_stamp = 0;
p->counted = 1;
p->changed = 0;
/* process_find_name(p); */
/* add the process to the hash table */
hash_process(p);
return p;
}
/* Get / create a new process object and insert it into the process list */
struct process *get_process(pid_t pid) {
struct process *p = find_process(pid);
return p != nullptr ? p : new_process(pid);
}
/******************************************
* Functions *
******************************************/
/******************************************
* Destroy and remove a process *
******************************************/
static void delete_process(struct process *p) {
#if defined(PARANOID)
assert(p->id == 0x0badfeed);
/*
* Ensure that deleted processes aren't reused.
*/
p->id = 0x007babe;
#endif /* defined(PARANOID) */
/*
* Maintain doubly linked list.
*/
if (p->next != nullptr) { p->next->previous = p->previous; }
if (p->previous != nullptr) {
p->previous->next = p->next;
} else {
first_process = p->next;
}
free_and_zero(p->name);
free_and_zero(p->basename);
/* remove the process from the hash table */
unhash_process(p);
free(p);
}
/******************************************
* Strip dead process entries *
******************************************/
static void process_cleanup() {
struct process *p = first_process;
while (p != nullptr) {
struct process *current = p;
#if defined(PARANOID)
assert(p->id == 0x0badfeed);
#endif /* defined(PARANOID) */
p = p->next;
/* Delete processes that have died */
if (current->time_stamp != g_time) {
delete_process(current);
if (current == first_process) { first_process = nullptr; }
current = nullptr;
}
}
}
/******************************************
* Find the top processes *
******************************************/
/* cpu comparison function for prio queue */
static int compare_cpu(void *va, void *vb) {
auto *a = static_cast<struct process *>(va),
*b = static_cast<struct process *>(vb);
if (b->amount > a->amount) { return 1; }
if (a->amount > b->amount) { return -1; }
return 0;
}
/* mem comparison function for prio queue */
static int compare_mem(void *va, void *vb) {
auto *a = static_cast<struct process *>(va),
*b = static_cast<struct process *>(vb);
if (b->rss > a->rss) { return 1; }
if (a->rss > b->rss) { return -1; }
return 0;
}
/* CPU time comparison function for prio queue */
static int compare_time(void *va, void *vb) {
auto *a = static_cast<struct process *>(va),
*b = static_cast<struct process *>(vb);
if (b->total_cpu_time > a->total_cpu_time) { return 1; }
if (b->total_cpu_time < a->total_cpu_time) { return -1; }
return 0;
}
#ifdef BUILD_IOSTATS
/* I/O comparison function for prio queue */
static int compare_io(void *va, void *vb) {
auto *a = static_cast<struct process *>(va),
*b = static_cast<struct process *>(vb);
if (b->io_perc > a->io_perc) { return 1; }
if (a->io_perc > b->io_perc) { return -1; }
return 0;
}
#endif /* BUILD_IOSTATS */
/* ****************************************************************** *
* Get a sorted list of the top cpu hogs and top mem hogs. * Results are stored
* in the cpu,mem arrays in decreasing order[0-9]. *
* ****************************************************************** */
static void process_find_top(struct process **cpu, struct process **mem,
struct process **ptime
#ifdef BUILD_IOSTATS
,
struct process **io
#endif /* BUILD_IOSTATS */
) {
prio_queue_t cpu_queue, mem_queue, time_queue;
#ifdef BUILD_IOSTATS
prio_queue_t io_queue;
#endif
struct process *cur_proc = nullptr;
int i;
if ((top_cpu == 0) && (top_mem == 0) && (top_time == 0)
#ifdef BUILD_IOSTATS
&& (top_io == 0)
#endif /* BUILD_IOSTATS */
&& (top_running == 0)) {
return;
}
cpu_queue = init_prio_queue();
pq_set_compare(cpu_queue, &compare_cpu);
pq_set_max_size(cpu_queue, MAX_SP);
mem_queue = init_prio_queue();
pq_set_compare(mem_queue, &compare_mem);
pq_set_max_size(mem_queue, MAX_SP);
time_queue = init_prio_queue();
pq_set_compare(time_queue, &compare_time);
pq_set_max_size(time_queue, MAX_SP);
#ifdef BUILD_IOSTATS
io_queue = init_prio_queue();
pq_set_compare(io_queue, &compare_io);
pq_set_max_size(io_queue, MAX_SP);
#endif
/* g_time is the time_stamp entry for process. It is updated when the
* process information is updated to indicate that the process is still
* alive (and must not be removed from the process list in
* process_cleanup()) */
++g_time;
/* OS-specific function updating process list */
get_top_info();
process_cleanup(); /* cleanup list from exited processes */
cur_proc = first_process;
while (cur_proc != nullptr) {
if (top_cpu != 0) { insert_prio_elem(cpu_queue, cur_proc); }
if (top_mem != 0) { insert_prio_elem(mem_queue, cur_proc); }
if (top_time != 0) { insert_prio_elem(time_queue, cur_proc); }
#ifdef BUILD_IOSTATS
if (top_io != 0) { insert_prio_elem(io_queue, cur_proc); }
#endif /* BUILD_IOSTATS */
cur_proc = cur_proc->next;
}
for (i = 0; i < MAX_SP; i++) {
if (top_cpu != 0) {
cpu[i] = static_cast<process *>(pop_prio_elem(cpu_queue));
}
if (top_mem != 0) {
mem[i] = static_cast<process *>(pop_prio_elem(mem_queue));
}
if (top_time != 0) {
ptime[i] = static_cast<process *>(pop_prio_elem(time_queue));
}
#ifdef BUILD_IOSTATS
if (top_io != 0) {
io[i] = static_cast<process *>(pop_prio_elem(io_queue));
}
#endif /* BUILD_IOSTATS */
}
free_prio_queue(cpu_queue);
free_prio_queue(mem_queue);
free_prio_queue(time_queue);
#ifdef BUILD_IOSTATS
free_prio_queue(io_queue);
#endif /* BUILD_IOSTATS */
}
int update_top() {
process_find_top(info.cpu, info.memu, info.time
#ifdef BUILD_IOSTATS
,
info.io
#endif
);
info.first_process = get_first_process();
return 0;
}
static char *format_time(unsigned long timeval, const int width) {
char buf[10];
unsigned long nt; // narrow time, for speed on 32-bit
unsigned cc; // centiseconds
unsigned nn; // multi-purpose whatever
nt = timeval;
cc = nt % 100; // centiseconds past second
nt /= 100; // total seconds
nn = nt % 60; // seconds past the minute
nt /= 60; // total minutes
if (width >= snprintf(buf, sizeof buf, "%lu:%02u.%02u", nt, nn, cc)) {
return strndup(buf, text_buffer_size.get(*state));
}
if (width >= snprintf(buf, sizeof buf, "%lu:%02u", nt, nn)) {
return strndup(buf, text_buffer_size.get(*state));
}
nn = nt % 60; // minutes past the hour
nt /= 60; // total hours
if (width >= snprintf(buf, sizeof buf, "%lu,%02u", nt, nn)) {
return strndup(buf, text_buffer_size.get(*state));
}
nn = nt; // now also hours
if (width >= snprintf(buf, sizeof buf, "%uh", nn)) {
return strndup(buf, text_buffer_size.get(*state));
}
nn /= 24; // now days
if (width >= snprintf(buf, sizeof buf, "%ud", nn)) {
return strndup(buf, text_buffer_size.get(*state));
}
nn /= 7; // now weeks
if (width >= snprintf(buf, sizeof buf, "%uw", nn)) {
return strndup(buf, text_buffer_size.get(*state));
}
// well shoot, this outta' fit...
return strndup("<inf>", text_buffer_size.get(*state));
}
struct top_data {
struct process **list;
int num;
int was_parsed;
char *s;
};
static conky::range_config_setting<unsigned int> top_name_width(
"top_name_width", 0, std::numeric_limits<unsigned int>::max(), 15, true);
static conky::simple_config_setting<bool> top_name_verbose("top_name_verbose",
false, true);
static void print_top_name(struct text_object *obj, char *p,
unsigned int p_max_size) {
auto *td = static_cast<struct top_data *>(obj->data.opaque);
int width;
if ((td == nullptr) || (td->list == nullptr) ||
(td->list[td->num] == nullptr)) {
return;
}
width = std::min(p_max_size,
static_cast<unsigned int>(top_name_width.get(*state)) + 1);
if (top_name_verbose.get(*state)) {
/* print the full command line */
snprintf(p, width + 1, "%-*s", width, td->list[td->num]->name);
} else {
/* print only the basename (i.e. executable name) */
snprintf(p, width + 1, "%-*s", width, td->list[td->num]->basename);
}
}
static void print_top_mem(struct text_object *obj, char *p,
unsigned int p_max_size) {
auto *td = static_cast<struct top_data *>(obj->data.opaque);
int width;
if ((td == nullptr) || (td->list == nullptr) ||
(td->list[td->num] == nullptr)) {
return;
}
width = std::min(p_max_size, static_cast<unsigned int>(7));
snprintf(p, width, "%6.2f",
(static_cast<float>(td->list[td->num]->rss) / info.memmax) / 10);
}
static void print_top_time(struct text_object *obj, char *p,
unsigned int p_max_size) {
auto *td = static_cast<struct top_data *>(obj->data.opaque);
int width;
char *timeval;
if ((td == nullptr) || (td->list == nullptr) ||
(td->list[td->num] == nullptr)) {
return;
}
width = std::min(p_max_size, static_cast<unsigned int>(10));
timeval = format_time(td->list[td->num]->total_cpu_time, 9);
snprintf(p, width, "%9s", timeval);
free(timeval);
}
static void print_top_user(struct text_object *obj, char *p,
unsigned int p_max_size) {
auto *td = static_cast<struct top_data *>(obj->data.opaque);
struct passwd *pw;
if ((td == nullptr) || (td->list == nullptr) ||
(td->list[td->num] == nullptr)) {
return;
}
pw = getpwuid(td->list[td->num]->uid);
if (pw != nullptr) {
snprintf(p, p_max_size, "%.8s", pw->pw_name);
} else {
snprintf(p, p_max_size, "%d", td->list[td->num]->uid);
}
}
#define PRINT_TOP_GENERATOR(name, width, fmt, field) \
static void print_top_##name(struct text_object *obj, char *p, \
unsigned int p_max_size) { \
struct top_data *td = (struct top_data *)obj->data.opaque; \
if (!td || !td->list || !td->list[td->num]) return; \
snprintf(p, std::min(p_max_size, width), fmt, td->list[td->num]->field); \
}
#define PRINT_TOP_HR_GENERATOR(name, field, denom) \
static void print_top_##name(struct text_object *obj, char *p, \
unsigned int p_max_size) { \
struct top_data *td = (struct top_data *)obj->data.opaque; \
if (!td || !td->list || !td->list[td->num]) return; \
human_readable(td->list[td->num]->field / (denom), p, p_max_size); \
}
PRINT_TOP_GENERATOR(cpu, (unsigned int)7, "%6.2f", amount)
PRINT_TOP_GENERATOR(pid, (unsigned int)8, "%7i", pid)
PRINT_TOP_GENERATOR(uid, (unsigned int)6, "%5i", uid)
PRINT_TOP_HR_GENERATOR(mem_res, rss, 1)
PRINT_TOP_HR_GENERATOR(mem_vsize, vsize, 1)
#ifdef BUILD_IOSTATS
PRINT_TOP_HR_GENERATOR(read_bytes, read_bytes, active_update_interval())
PRINT_TOP_HR_GENERATOR(write_bytes, write_bytes, active_update_interval())
PRINT_TOP_GENERATOR(io_perc, (unsigned int)7, "%6.2f", io_perc)
#endif /* BUILD_IOSTATS */
static void free_top(struct text_object *obj) {
auto *td = static_cast<struct top_data *>(obj->data.opaque);
if (td == nullptr) { return; }
free_and_zero(td->s);
free_and_zero(obj->data.opaque);
}
int parse_top_args(const char *s, const char *arg, struct text_object *obj) {
struct top_data *td;
char buf[64];
int n;
if (arg == nullptr) {
NORM_ERR("top needs arguments");
return 0;
}
obj->data.opaque = td =
static_cast<struct top_data *>(malloc(sizeof(struct top_data)));
memset(td, 0, sizeof(struct top_data));
if (s[3] == 0) {
td->list = info.cpu;
top_cpu = 1;
} else if (strcmp(&s[3], "_mem") == EQUAL) {
td->list = info.memu;
top_mem = 1;
} else if (strcmp(&s[3], "_time") == EQUAL) {
td->list = info.time;
top_time = 1;
#ifdef BUILD_IOSTATS
} else if (strcmp(&s[3], "_io") == EQUAL) {
td->list = info.io;
top_io = 1;
#endif /* BUILD_IOSTATS */
} else {
#ifdef BUILD_IOSTATS
NORM_ERR("Must be top, top_mem, top_time or top_io");
#else /* BUILD_IOSTATS */
NORM_ERR("Must be top, top_mem or top_time");
#endif /* BUILD_IOSTATS */
free_and_zero(obj->data.opaque);
return 0;
}
td->s = strndup(arg, text_buffer_size.get(*state));
if (sscanf(arg, "%63s %i", buf, &n) == 2) {
if (strcmp(buf, "name") == EQUAL) {
obj->callbacks.print = &print_top_name;
} else if (strcmp(buf, "cpu") == EQUAL) {
obj->callbacks.print = &print_top_cpu;
} else if (strcmp(buf, "pid") == EQUAL) {
obj->callbacks.print = &print_top_pid;
} else if (strcmp(buf, "mem") == EQUAL) {
obj->callbacks.print = &print_top_mem;
} else if (strcmp(buf, "time") == EQUAL) {
obj->callbacks.print = &print_top_time;
} else if (strcmp(buf, "mem_res") == EQUAL) {
obj->callbacks.print = &print_top_mem_res;
} else if (strcmp(buf, "mem_vsize") == EQUAL) {
obj->callbacks.print = &print_top_mem_vsize;
} else if (strcmp(buf, "uid") == EQUAL) {
obj->callbacks.print = &print_top_uid;
} else if (strcmp(buf, "user") == EQUAL) {
obj->callbacks.print = &print_top_user;
#ifdef BUILD_IOSTATS
} else if (strcmp(buf, "io_read") == EQUAL) {
obj->callbacks.print = &print_top_read_bytes;
} else if (strcmp(buf, "io_write") == EQUAL) {
obj->callbacks.print = &print_top_write_bytes;
} else if (strcmp(buf, "io_perc") == EQUAL) {
obj->callbacks.print = &print_top_io_perc;
#endif /* BUILD_IOSTATS */
} else {
NORM_ERR("invalid type arg for top");
#ifdef BUILD_IOSTATS
NORM_ERR(
"must be one of: name, cpu, pid, mem, time, mem_res, mem_vsize, "
"io_read, io_write, io_perc");
#else /* BUILD_IOSTATS */
NORM_ERR("must be one of: name, cpu, pid, mem, time, mem_res, mem_vsize");
#endif /* BUILD_IOSTATS */
free_and_zero(td->s);
free_and_zero(obj->data.opaque);
return 0;
}
if (n < 1 || n > MAX_SP) {
NORM_ERR("invalid num arg for top. Must be between 1 and %d.", MAX_SP);
free_and_zero(td->s);
free_and_zero(obj->data.opaque);
return 0;
}
td->num = n - 1;
} else {
NORM_ERR("invalid argument count for top");
free_and_zero(td->s);
free_and_zero(obj->data.opaque);
return 0;
}
obj->callbacks.free = &free_top;
return 1;
}