1
0
mirror of https://github.com/Llewellynvdm/conky.git synced 2025-01-13 11:15:27 +00:00
conky/freebsd.c

451 lines
8.6 KiB
C

#include "conky.h"
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <kvm.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/dkstat.h>
#include <unistd.h>
#include <sys/user.h>
#include <sys/socket.h>
#include <net/if.h>
#include <net/if_mib.h>
#include <sys/socket.h>
#include <ifaddrs.h>
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
#define KELVTOC(x) ((x - 2732) / 10.0)
#if defined(i386) || defined(__i386__)
static unsigned int get_timer();
static unsigned int get_cpu_speed(void);
static inline unsigned long long int rdtsc(void);
/* cpu frequency detection code based on mplayer's one */
static unsigned int get_timer()
{
struct timeval tv;
struct timezone tz;
gettimeofday(&tv, &tz);
return (tv.tv_sec * 1000000 + tv.tv_usec);
}
static inline unsigned long long int rdtsc(void)
{
unsigned long long int retval;
__asm __volatile("rdtsc":"=A"(retval)::"memory");
return retval;
}
static unsigned int get_cpu_speed(void)
{
unsigned long long int tscstart, tscstop;
unsigned int start, stop;
tscstart = rdtsc();
start = get_timer();
usleep(50000);
stop = get_timer();
tscstop = rdtsc();
return ((tscstop - tscstart) / ((stop - start) / 1000.0));
}
#endif
static int getsysctl(char *name, void *ptr, size_t len)
{
size_t nlen = len;
if (sysctlbyname(name, ptr, &nlen, NULL, 0) == -1) {
return -1;
}
if (nlen != len) {
return -1;
}
return 0;
}
static kvm_t *kd = NULL;
struct ifmibdata *data = NULL;
size_t len = 0;
static int swapmode(int *retavail, int *retfree)
{
int n;
int pagesize = getpagesize();
struct kvm_swap swapary[1];
static int kd_init = 1;
if (kd_init) {
kd_init = 0;
if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
(void) fprintf(stderr, "Cannot read kvm.");
return -1;
}
}
if (kd == NULL) {
return -1;
}
*retavail = 0;
*retfree = 0;
#define CONVERT(v) ((quad_t)(v) * pagesize / 1024)
n = kvm_getswapinfo(kd, swapary, 1, 0);
if (n < 0 || swapary[0].ksw_total == 0)
return (0);
*retavail = CONVERT(swapary[0].ksw_total);
*retfree = CONVERT(swapary[0].ksw_total - swapary[0].ksw_used);
n = (int) ((double) swapary[0].ksw_used * 100.0 /
(double) swapary[0].ksw_total);
return n;
}
void prepare_update()
{
}
/*double get_uptime() */
void update_uptime()
{
int mib[2] = { CTL_KERN, KERN_BOOTTIME };
struct timeval boottime;
time_t now;
size_t size = sizeof(boottime);
if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1)
&& (boottime.tv_sec != 0)) {
time(&now);
info.uptime = now - boottime.tv_sec;
} else {
(void) fprintf(stderr, "Could not get uptime\n");
info.uptime = 0;
}
}
void update_meminfo()
{
int total_pages, inactive_pages, free_pages;
int swap_avail, swap_free;
int pagesize = getpagesize();
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages))
(void) fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_page_count\"");
if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages))
(void) fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_free_count\"");
if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages))
(void) fprintf(stderr,
"Cannot read sysctl \"vm.stats.vm.v_inactive_count\"");
info.memmax = (total_pages * pagesize) >> 10;
info.mem =
((total_pages - free_pages - inactive_pages) * pagesize) >> 10;
if ((swapmode(&swap_avail, &swap_free)) >= 0) {
info.swapmax = swap_avail;
info.swap = (swap_avail - swap_free);
} else {
info.swapmax = 0;
info.swap = 0;
}
}
void update_net_stats()
{
struct net_stat *ns;
double delta;
long long r, t, last_recv, last_trans;
struct ifaddrs *ifap, *ifa;
struct if_data *ifd;
/* get delta */
delta = current_update_time - last_update_time;
if (delta <= 0.0001)
return;
if (getifaddrs(&ifap) < 0)
return;
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *) ifa->ifa_name);
if (ifa->ifa_flags & IFF_UP) {
last_recv = ns->recv;
last_trans = ns->trans;
if (ifa->ifa_addr->sa_family != AF_LINK)
continue;
ifd = (struct if_data *) ifa->ifa_data;
r = ifd->ifi_ibytes;
t = ifd->ifi_obytes;
if (r < ns->last_read_recv)
ns->recv +=
((long long) 4294967295U -
ns->last_read_recv) + r;
else
ns->recv += (r - ns->last_read_recv);
ns->last_read_recv = r;
if (t < ns->last_read_trans)
ns->trans +=
((long long) 4294967295U -
ns->last_read_trans) + t;
else
ns->trans += (t - ns->last_read_trans);
ns->last_read_trans = t;
/* calculate speeds */
ns->recv_speed = (ns->recv - last_recv) / delta;
ns->trans_speed = (ns->trans - last_trans) / delta;
}
}
freeifaddrs(ifap);
}
void update_total_processes()
{
/* It's easier to use kvm here than sysctl */
int n_processes;
static int kd_init = 1;
if (kd_init) {
kd_init = 0;
if ((kd = kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
(void) fprintf(stderr, "Cannot read kvm.");
return;
}
}
if (kd != NULL)
kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
else
return;
info.procs = n_processes;
}
void update_running_processes()
{
static int kd_init = 1;
struct kinfo_proc *p;
int n_processes;
int i, cnt = 0;
if (kd_init) {
kd_init = 0;
if ((kd =
kvm_open("/dev/null", "/dev/null", "/dev/null",
O_RDONLY, "kvm_open")) == NULL) {
(void) fprintf(stderr, "Cannot read kvm.");
}
}
if (kd != NULL) {
p = kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
for (i = 0; i < n_processes; i++) {
#if __FreeBSD__ < 5
if (p[i].kp_proc.p_stat == SRUN)
#else
if (p[i].ki_stat == SRUN)
#endif
cnt++;
}
} else
return;
info.run_procs = cnt;
}
struct cpu_load_struct {
unsigned long load[5];
};
struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} };
long cpu_used, oldtotal, oldused;
void update_cpu_usage()
{
long used, total;
long cp_time[CPUSTATES];
size_t len = sizeof(cp_time);
if (sysctlbyname("kern.cp_time", &cp_time, &len, NULL, 0) < 0) {
(void) fprintf(stderr, "Cannot get kern.cp_time");
}
fresh.load[0] = cp_time[CP_USER];
fresh.load[1] = cp_time[CP_NICE];
fresh.load[2] = cp_time[CP_SYS];
fresh.load[3] = cp_time[CP_IDLE];
fresh.load[4] = cp_time[CP_IDLE];
used = fresh.load[0] + fresh.load[1] + fresh.load[2];
total =
fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3];
if ((total - oldtotal) != 0) {
info.cpu_usage =
((double) (used - oldused)) / (double) (total -
oldtotal);
} else {
info.cpu_usage = 0;
}
oldused = used;
oldtotal = total;
}
double get_i2c_info(int *fd, int div, char *devtype)
{
return 0;
}
void update_load_average()
{
double v[3];
getloadavg(v, 3);
info.loadavg[0] = (float) v[0];
info.loadavg[1] = (float) v[1];
info.loadavg[2] = (float) v[2];
}
double get_acpi_temperature(int fd)
{
int temp;
if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) {
(void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n");
return 0.0;
}
return KELVTOC(temp);
}
void get_battery_stuff(char *buf, unsigned int n, const char *bat)
{
int battime;
if (GETSYSCTL("hw.acpi.battery.time", battime))
(void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.battery.time\"\n");
if (battime != -1)
snprintf(buf, n, "Discharging, remaining %d:%2.2d",
battime / 60, battime % 60);
else
snprintf(buf, n, "Battery is charging");
}
int
open_i2c_sensor(const char *dev, const char *type, int n, int *div,
char *devtype)
{
return 0;
}
int open_acpi_temperature(const char *name)
{
return 0;
}
char *get_acpi_ac_adapter(void)
{
int state;
char *acstate = (char *) malloc(100);
if (GETSYSCTL("hw.acpi.acline", state)) {
(void) fprintf(stderr,
"Cannot read sysctl \"hw.acpi.acline\"\n");
return "n\\a";
}
if (state)
strcpy(acstate, "Running on AC Power");
else
strcpy(acstate, "Running on battery");
return acstate;
}
char *get_acpi_fan()
{
return "";
}
char *get_adt746x_cpu()
{
return "";
}
char *get_adt746x_fan()
{
return "";
}
char *get_freq()
{
#if defined(i386) || defined(__i386__)
int i;
char *cpuspeed;
if ((cpuspeed = (char *) malloc(16)) == NULL)
exit(1);
i = 0;
if ((i = get_cpu_speed()) > 0) {
if (i < 1000000) {
i += 50; /* for rounding */
snprintf(cpuspeed, 15, "%d.%d MHz", i / 1000,
(i / 100) % 10);
} else {
snprintf(cpuspeed, 15, "%d MHz", i / 1000);
}
} else {
cpuspeed = "";
}
return cpuspeed;
#else
return "";
#endif
}