conky/src/dragonfly.cc

850 lines
21 KiB
C++

/*
*
* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2011 Andrea Magliano <masterblaster@tiscali.it>
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "config.h"
#include <kinfo_pcpu.h>
#include <sys/ioctl.h>
#include <sys/param.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/user.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_mib.h>
#include <net/if_var.h>
#include <devstat.h>
#include <ifaddrs.h>
#include <limits.h>
#include <pthread.h>
#include <unistd.h>
#include <dev/acpica/acpiio.h>
#include "conky.h"
#include "diskio.h"
#include "dragonfly.h"
#include "logging.h"
#include "net_stat.h"
#include "top.h"
#define GETSYSCTL(name, var) getsysctl(name, &(var), sizeof(var))
#define KELVTOC(x) ((x - 2732) / 10.0)
#define MAXSHOWDEVS 16
static short cpu_setup = 0;
static int getsysctl(const char *name, void *ptr, size_t len) {
size_t nlen = len;
if (sysctlbyname(name, ptr, &nlen, nullptr, 0) == -1) {
fprintf(stderr, "getsysctl(): %s failed '%s'\n", name, strerror(errno));
return -1;
}
if (nlen != len && errno == ENOMEM) {
fprintf(stderr, "getsysctl(): %s failed %zu != %zu\n", name, nlen, len);
return -1;
}
return 0;
}
static int swapmode(unsigned long *retavail, unsigned long *retfree) {
int total, used;
size_t len = sizeof(int);
if (sysctlbyname("vm.swap_size", &total, &len, nullptr, 0) == -1)
perror("vm_swap_usage(): vm.swap_size");
else if (sysctlbyname("vm.swap_anon_use", &used, &len, nullptr, 0) == -1)
perror("vm_swap_usage(): vm.swap_anon_use");
else {
int size = getpagesize();
#define CONVERT(v) ((quad_t)(v) * (size / 1024))
*retavail = CONVERT(total);
*retfree = CONVERT(total - used);
return (int)((double)used * 100.0 / (double)total);
}
return 0;
}
void prepare_update(void) {}
int update_uptime(void) {
int mib[2] = {CTL_KERN, KERN_BOOTTIME};
struct timeval boottime;
time_t now;
size_t size = sizeof(boottime);
if ((sysctl(mib, 2, &boottime, &size, nullptr, 0) != -1) && boottime.tv_sec) {
time(&now);
info.uptime = now - boottime.tv_sec;
} else {
fprintf(stderr, "Could not get uptime\n");
info.uptime = 0;
}
return 0;
}
int check_mount(char *s) {
struct statfs *mntbuf;
int i, mntsize;
mntsize = getmntinfo(&mntbuf, MNT_NOWAIT);
for (i = mntsize - 1; i >= 0; i--) {
if (strcmp(mntbuf[i].f_mntonname, s) == 0) { return 1; }
}
return 0;
}
int update_meminfo(void) {
u_int total_pages, inactive_pages, free_pages;
unsigned long swap_avail, swap_free;
int pagesize = getpagesize();
if (GETSYSCTL("vm.stats.vm.v_page_count", total_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_page_count\"\n");
}
if (GETSYSCTL("vm.stats.vm.v_free_count", free_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_free_count\"\n");
}
if (GETSYSCTL("vm.stats.vm.v_inactive_count", inactive_pages)) {
fprintf(stderr, "Cannot read sysctl \"vm.stats.vm.v_inactive_count\"\n");
}
info.memmax = total_pages * (pagesize >> 10);
info.mem = (total_pages - free_pages - inactive_pages) * (pagesize >> 10);
info.memeasyfree = info.memfree = info.memmax - info.mem;
if ((swapmode(&swap_avail, &swap_free)) >= 0) {
info.swapmax = swap_avail;
info.swap = (swap_avail - swap_free);
info.swapfree = swap_free;
} else {
info.swapmax = 0;
info.swap = 0;
info.swapfree = 0;
}
return 0;
}
int update_net_stats(void) {
struct net_stat *ns;
double delta;
long long r, t, last_recv, last_trans;
struct ifaddrs *ifap, *ifa;
struct if_data *ifd;
/* get delta */
delta = current_update_time - last_update_time;
if (delta <= 0.0001) { return 0; }
if (getifaddrs(&ifap) < 0) { return 0; }
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *)ifa->ifa_name, nullptr, NULL);
if (ifa->ifa_flags & IFF_UP) {
struct ifaddrs *iftmp;
ns->up = 1;
last_recv = ns->recv;
last_trans = ns->trans;
if (ifa->ifa_addr->sa_family != AF_LINK) { continue; }
for (iftmp = ifa->ifa_next;
iftmp != nullptr && strcmp(ifa->ifa_name, iftmp->ifa_name) == 0;
iftmp = iftmp->ifa_next) {
if (iftmp->ifa_addr->sa_family == AF_INET) {
memcpy(&(ns->addr), iftmp->ifa_addr, iftmp->ifa_addr->sa_len);
}
}
ifd = (struct if_data *)ifa->ifa_data;
r = ifd->ifi_ibytes;
t = ifd->ifi_obytes;
if (r < ns->last_read_recv) {
ns->recv += ((long long)4294967295U - ns->last_read_recv) + r;
} else {
ns->recv += (r - ns->last_read_recv);
}
ns->last_read_recv = r;
if (t < ns->last_read_trans) {
ns->trans += ((long long)4294967295U - ns->last_read_trans) + t;
} else {
ns->trans += (t - ns->last_read_trans);
}
ns->last_read_trans = t;
/* calculate speeds */
ns->recv_speed = (ns->recv - last_recv) / delta;
ns->trans_speed = (ns->trans - last_trans) / delta;
} else {
ns->up = 0;
}
}
freeifaddrs(ifap);
return 0;
}
static int kern_proc_all_n() {
size_t len = 0;
if (sysctlbyname("kern.proc.all_lwp", nullptr, &len, NULL, 0) == -1) {
perror("kern.proc.all_lwp");
return -1;
}
if (len % sizeof(struct kinfo_proc)) {
fprintf(stderr,
"kern_proc(): "
"len %% sizeof(struct kinfo_proc) != 0");
return -1;
}
return len / sizeof(struct kinfo_proc);
}
static struct kinfo_proc *kern_proc_all(size_t proc_n) {
if (proc_n > 0) {
size_t len = proc_n * sizeof(struct kinfo_proc);
struct kinfo_proc *kp = (struct kinfo_proc *)malloc(len);
if (kp) {
if (sysctlbyname("kern.proc.all_lwp", kp, &len, nullptr, 0) == -1)
perror("kern_proc(): kern.proc.all_lwp");
else
return kp;
free(kp);
} else
perror("malloc");
}
return nullptr;
}
void get_cpu_count(void) {
int cpu_count = 0;
if (GETSYSCTL("hw.ncpu", cpu_count) == 0) {
info.cpu_count = cpu_count;
} else {
fprintf(stderr, "Cannot get hw.ncpu\n");
info.cpu_count = 0;
}
info.cpu_usage = (float *)malloc((info.cpu_count + 1) * sizeof(float));
if (info.cpu_usage == nullptr) { CRIT_ERR(nullptr, NULL, "malloc"); }
}
struct cpu_info {
long oldtotal;
long oldused;
};
PCPU_STATISTICS_FUNC(cputime, struct kinfo_cputime, uint64_t);
static void stat_cpu(struct cpu_info *cpu, struct kinfo_cputime *percpu,
float *usage) {
long int used = (percpu->cp_user + percpu->cp_nice + percpu->cp_sys +
percpu->cp_intr),
total = used + percpu->cp_idle;
*usage = (total - cpu->oldtotal) && cpu->oldtotal
? ((float)(used - cpu->oldused)) / (total - cpu->oldtotal)
: 0;
cpu->oldused = used;
cpu->oldtotal = total;
}
int update_cpu_usage(void) {
static struct cpu_info *cpu = nullptr;
extern void *global_cpu;
/* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */
if ((cpu_setup == 0) || (!info.cpu_usage)) {
get_cpu_count();
cpu_setup = 1;
}
if (!global_cpu) {
if (!cpu)
cpu = (struct cpu_info *)calloc(sizeof(struct cpu_info),
info.cpu_count + 1);
global_cpu = cpu;
}
{
size_t percpu_n = info.cpu_count * sizeof(struct kinfo_cputime);
struct kinfo_cputime *percpu = (struct kinfo_cputime *)malloc(
info.cpu_count * sizeof(struct kinfo_cputime));
if (percpu) {
if (sysctlbyname("kern.cputime", percpu, &percpu_n, nullptr, 0) == -1 &&
errno != ENOMEM) {
printf("update_cpu_usage(): with %d cpu(s) ", info.cpu_count);
perror("kern.cputime");
} else {
struct kinfo_cputime total;
cputime_pcpu_statistics(&percpu[0], &total, info.cpu_count);
{
int i;
for (i = 0; i < info.cpu_count; i++)
stat_cpu(&cpu[i + 1], &percpu[i], &info.cpu_usage[i + 1]);
}
stat_cpu(&cpu[0], &total, &info.cpu_usage[0]);
}
free(percpu);
}
}
return 0;
}
void free_cpu(struct text_object *) { /* no-op */
}
int update_load_average(void) {
double v[3];
getloadavg(v, 3);
info.loadavg[0] = (double)v[0];
info.loadavg[1] = (double)v[1];
info.loadavg[2] = (double)v[2];
return 0;
}
double get_acpi_temperature(int fd) {
int temp;
(void)fd;
if (GETSYSCTL("hw.acpi.thermal.tz0.temperature", temp)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.thermal.tz0.temperature\"\n");
return 0.0;
}
return KELVTOC(temp);
}
static void get_battery_stats(int *battime, int *batcapacity, int *batstate,
int *ac) {
if (battime && GETSYSCTL("hw.acpi.battery.time", *battime)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.time\"\n");
}
if (batcapacity && GETSYSCTL("hw.acpi.battery.life", *batcapacity)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.life\"\n");
}
if (batstate && GETSYSCTL("hw.acpi.battery.state", *batstate)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.state\"\n");
}
if (ac && GETSYSCTL("hw.acpi.acline", *ac)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n");
}
}
void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item) {
int battime, batcapacity, batstate, ac;
(void)bat;
get_battery_stats(&battime, &batcapacity, &batstate, &ac);
if (batstate != 1 && batstate != 2 && batstate != 0 && batstate != 7)
fprintf(stderr, "Unknown battery state %d!\n", batstate);
else if (batstate != 1 && ac == 0)
fprintf(stderr, "Battery charging while not on AC!\n");
else if (batstate == 1 && ac == 1)
fprintf(stderr, "Battery discharing while on AC!\n");
switch (item) {
case BATTERY_TIME:
if (batstate == 1 && battime != -1)
snprintf(buf, n, "%d:%2.2d", battime / 60, battime % 60);
break;
case BATTERY_STATUS:
if (batstate == 1) // Discharging
snprintf(buf, n, "remaining %d%%", batcapacity);
else
snprintf(buf, n,
batstate == 2
? "charging (%d%%)"
: (batstate == 7 ? "absent/on AC" : "charged (%d%%)"),
batcapacity);
break;
default:
fprintf(stderr, "Unknown requested battery stat %d\n", item);
}
}
static int check_bat(const char *bat) {
int batnum, numbatts;
char *endptr;
if (GETSYSCTL("hw.acpi.battery.units", numbatts)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.battery.units\"\n");
return -1;
}
if (numbatts <= 0) {
fprintf(stderr, "No battery unit detected\n");
return -1;
}
if (!bat || (batnum = strtol(bat, &endptr, 10)) < 0 || bat == endptr ||
batnum > numbatts) {
fprintf(stderr, "Wrong battery unit %s requested\n", bat ? bat : "");
return -1;
}
return batnum;
}
int get_battery_perct(const char *bat) {
union acpi_battery_ioctl_arg battio;
int batnum, acpifd;
int designcap, lastfulcap, batperct;
if ((battio.unit = batnum = check_bat(bat)) < 0) return 0;
if ((acpifd = open("/dev/acpi", O_RDONLY)) < 0) {
fprintf(stderr, "Can't open ACPI device\n");
return 0;
}
if (ioctl(acpifd, ACPIIO_BATT_GET_BIF, &battio) == -1) {
fprintf(stderr, "Unable to get info for battery unit %d\n", batnum);
return 0;
}
close(acpifd);
designcap = battio.bif.dcap;
lastfulcap = battio.bif.lfcap;
batperct = (designcap > 0 && lastfulcap > 0)
? (((float)lastfulcap / designcap) * 100)
: 0;
return batperct > 100 ? 100 : batperct;
}
double get_battery_perct_bar(struct text_object *obj) {
int batperct = get_battery_perct(obj->data.s);
return batperct * 2.56 - 1;
}
int open_acpi_temperature(const char *name) {
(void)name;
/* Not applicable for FreeBSD. */
return 0;
}
void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size,
const char *adapter) {
int state;
(void)adapter; // only linux uses this
if (!p_client_buffer || client_buffer_size <= 0) { return; }
if (GETSYSCTL("hw.acpi.acline", state)) {
fprintf(stderr, "Cannot read sysctl \"hw.acpi.acline\"\n");
return;
}
if (state) {
strncpy(p_client_buffer, "Running on AC Power", client_buffer_size);
} else {
strncpy(p_client_buffer, "Running on battery", client_buffer_size);
}
}
void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) {
/* not implemented */
if (p_client_buffer && client_buffer_size > 0) {
memset(p_client_buffer, 0, client_buffer_size);
}
}
/* void */
char get_freq(char *p_client_buffer, size_t client_buffer_size,
const char *p_format, int divisor, unsigned int cpu) {
int64_t freq;
if (p_client_buffer && client_buffer_size > 0 && p_format && divisor > 0) {
if (GETSYSCTL("hw.tsc_frequency", freq) == 0) {
snprintf(p_client_buffer, client_buffer_size, p_format,
(float)freq / (divisor * 1000000));
} else {
snprintf(p_client_buffer, client_buffer_size, p_format, 0.0f);
}
return 1;
}
return 0;
}
#if 0
void update_wifi_stats(void)
{
struct ifreq ifr; /* interface stats */
struct wi_req wireq;
struct net_stat *ns;
struct ifaddrs *ifap, *ifa;
struct ifmediareq ifmr;
int s;
/* Get iface table */
if (getifaddrs(&ifap) < 0) {
return;
}
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *) ifa->ifa_name, nullptr, NULL);
s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
/* Get media type */
bzero(&ifmr, sizeof(ifmr));
strlcpy(ifmr.ifm_name, ifa->ifa_name, IFNAMSIZ);
if (ioctl(s, SIOCGIFMEDIA, (caddr_t) &ifmr) < 0) {
close(s);
return;
}
/* We can monitor only wireless interfaces
* which are not in hostap mode */
if ((ifmr.ifm_active & IFM_IEEE80211)
&& !(ifmr.ifm_active & IFM_IEEE80211_HOSTAP)) {
/* Get wi status */
bzero(&ifr, sizeof(ifr));
strlcpy(ifr.ifr_name, ifa->ifa_name, IFNAMSIZ);
wireq.wi_type = WI_RID_COMMS_QUALITY;
wireq.wi_len = WI_MAX_DATALEN;
ifr.ifr_data = (void *) &wireq;
if (ioctl(s, SIOCGWAVELAN, (caddr_t) &ifr) < 0) {
perror("ioctl (getting wi status)");
exit(1);
}
/* wi_val[0] = quality
* wi_val[1] = signal
* wi_val[2] = noise */
ns->linkstatus = (int) wireq.wi_val[1];
}
cleanup:
close(s);
}
}
#endif
int update_diskio(void) {
int devs_count, num_selected, num_selections, dn;
struct device_selection *dev_select = nullptr;
long select_generation;
static struct statinfo statinfo_cur;
char device_name[DEFAULT_TEXT_BUFFER_SIZE];
struct diskio_stat *cur;
unsigned int reads, writes;
unsigned int total_reads = 0, total_writes = 0;
memset(&statinfo_cur, 0, sizeof(statinfo_cur));
statinfo_cur.dinfo = (struct devinfo *)calloc(1, sizeof(struct devinfo));
stats.current = stats.current_read = stats.current_write = 0;
if (getdevs(&statinfo_cur) < 0) {
free(statinfo_cur.dinfo);
return 0;
}
devs_count = statinfo_cur.dinfo->numdevs;
if (selectdevs(&dev_select, &num_selected, &num_selections,
&select_generation, statinfo_cur.dinfo->generation,
statinfo_cur.dinfo->devices, devs_count, nullptr, 0, NULL, 0,
DS_SELECT_ONLY, MAXSHOWDEVS, 1) >= 0) {
for (dn = 0; dn < devs_count; dn++) {
int di;
struct devstat *dev;
di = dev_select[dn].position;
dev = &statinfo_cur.dinfo->devices[di];
snprintf(device_name, DEFAULT_TEXT_BUFFER_SIZE, "%s%d",
dev_select[dn].device_name, dev_select[dn].unit_number);
total_reads += (reads = dev->bytes_read / 512);
total_writes += (writes = dev->bytes_written / 512);
for (cur = stats.next; cur; cur = cur->next) {
if (cur->dev && !strcmp(device_name, cur->dev)) {
update_diskio_values(cur, reads, writes);
break;
}
}
}
update_diskio_values(&stats, total_reads, total_writes);
free(dev_select);
}
free(statinfo_cur.dinfo);
return 0;
}
static int proc_rusage(struct kinfo_proc *p) {
struct kinfo_lwp *lwp = &p->kp_lwp;
struct rusage *cru = &p->kp_cru;
return (lwp->kl_uticks + lwp->kl_sticks + lwp->kl_iticks) +
(cru->ru_stime.tv_sec + cru->ru_utime.tv_sec) * 1000000;
}
static void proc_count(struct kinfo_proc *kp, size_t proc_n) {
size_t i, act = 0, run = 0;
for (i = 0; i < proc_n; i++) {
struct kinfo_proc *p = &kp[i];
if (!(p->kp_flags & P_SYSTEM)) {
struct kinfo_lwp *lwp = &p->kp_lwp;
if (!lwp->kl_tid) act++;
if (lwp->kl_stat == LSRUN) run++;
}
}
info.procs = act;
info.run_procs = run;
}
static void proc_fill(struct kinfo_proc *kp, size_t proc_n) {
size_t i, f = getpagesize();
static long prev_ticks = 0; /* safe as long as in same thread */
for (i = 0; i < proc_n; i++) {
struct kinfo_proc *p = &kp[i];
struct kinfo_lwp *lwp = &p->kp_lwp;
if (!(p->kp_flags & P_SYSTEM) && p->kp_comm &&
*p->kp_comm && /* just to be sure */
!lwp->kl_tid) { /* 'main' lwp, the real process (observed) */
struct process *my = get_process(p->kp_pid);
long ticks = proc_rusage(p);
my->time_stamp = g_time;
free_and_zero(my->name);
my->name = strdup(p->kp_comm);
my->amount = 100.0 * lwp->kl_pctcpu / FSCALE;
my->vsize = p->kp_vm_map_size;
my->rss = p->kp_vm_rssize * f;
my->total_cpu_time = ticks - prev_ticks;
prev_ticks = ticks;
// printf("\tmy[%p]: %s(%u) %d %d 0x%x 0x%x %f\n", p,
// my->name, my->pid, my->vsize, my->rss,
// p->kp_flags, lwp->kl_stat, my->amount);
}
}
}
void get_top_info(void) {
size_t proc_n = kern_proc_all_n();
struct kinfo_proc *kp = kern_proc_all(proc_n);
if (kp) {
proc_count(kp, proc_n);
proc_fill(kp, proc_n);
free(kp);
}
}
#if defined(i386) || defined(__i386__)
#define APMDEV "/dev/apm"
#define APM_UNKNOWN 255
int apm_getinfo(int fd, apm_info_t aip) {
if (ioctl(fd, APMIO_GETINFO, aip) == -1) { return -1; }
return 0;
}
char *get_apm_adapter(void) {
int fd;
struct apm_info a_info;
char *out;
out = (char *)calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if (apm_getinfo(fd, &a_info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
switch (a_info.ai_acline) {
case 0:
strncpy(out, "off-line", 16);
return out;
break;
case 1:
if (a_info.ai_batt_stat == 3) {
strncpy(out, "charging", 16);
return out;
} else {
strncpy(out, "on-line", 16);
return out;
}
break;
default:
strncpy(out, "unknown", 16);
return out;
break;
}
}
char *get_apm_battery_life(void) {
int fd;
u_int batt_life;
struct apm_info a_info;
char *out;
out = (char *)calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if (apm_getinfo(fd, &a_info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_life = a_info.ai_batt_life;
if (batt_life == APM_UNKNOWN) {
strncpy(out, "unknown", 16);
} else if (batt_life <= 100) {
snprintf(out, 16, "%d%%", batt_life);
return out;
} else {
strncpy(out, "ERR", 16);
}
return out;
}
char *get_apm_battery_time(void) {
int fd;
int batt_time;
int h, m, s;
struct apm_info a_info;
char *out;
out = (char *)calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if (apm_getinfo(fd, &a_info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_time = a_info.ai_batt_time;
if (batt_time == -1) {
strncpy(out, "unknown", 16);
} else {
h = batt_time;
s = h % 60;
h /= 60;
m = h % 60;
h /= 60;
snprintf(out, 16, "%2d:%02d:%02d", h, m, s);
}
return out;
}
#endif
void get_battery_short_status(char *buffer, unsigned int n, const char *bat) {
get_battery_stuff(buffer, n, bat, BATTERY_STATUS);
if (0 == strncmp("charging", buffer, 8)) {
buffer[0] = 'C';
memmove(buffer + 1, buffer + 8, n - 8);
} else if (0 == strncmp("discharging", buffer, 11)) {
buffer[0] = 'D';
memmove(buffer + 1, buffer + 11, n - 11);
} else if (0 == strncmp("absent/on AC", buffer, 12)) {
buffer[0] = 'A';
memmove(buffer + 1, buffer + 12, n - 12);
}
}
int get_entropy_avail(unsigned int *val) {
/* Not applicable for FreeBSD as it uses the yarrow prng. */
(void)val;
return 1;
}
int get_entropy_poolsize(unsigned int *val) {
/* Not applicable for FreeBSD as it uses the yarrow prng. */
(void)val;
return 1;
}