1
0
mirror of https://github.com/Llewellynvdm/conky.git synced 2024-12-30 21:41:46 +00:00
conky/src/openbsd.c
2008-06-21 20:37:58 +00:00

906 lines
19 KiB
C

/* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2007 Toni Spets
* Copyright (c) 2005-2008 Brenden Matthews, Philip Kovacs, et. al.
* (see AUTHORS)
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* $Id$ */
#include <sys/dkstat.h>
#include <sys/param.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/vmmeter.h>
#include <sys/user.h>
#include <sys/ioctl.h>
#include <sys/sensors.h>
#include <sys/malloc.h>
#include <sys/swap.h>
#include <kvm.h>
#include <net/if.h>
#include <net/if_media.h>
#include <netinet/in.h>
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <ifaddrs.h>
#include <limits.h>
#include <unistd.h>
#include <machine/apmvar.h>
#include <net80211/ieee80211.h>
#include <net80211/ieee80211_ioctl.h>
#include "conky.h"
#define MAXSHOWDEVS 16
#define LOG1024 10
#define pagetok(size) ((size) << pageshift)
inline void proc_find_top(struct process **cpu, struct process **mem);
static short cpu_setup = 0;
static kvm_t *kd = 0;
struct ifmibdata *data = NULL;
size_t len = 0;
int init_kvm = 0;
int init_sensors = 0;
static int kvm_init()
{
if (init_kvm) {
return 1;
}
kd = kvm_open(NULL, NULL, NULL, KVM_NO_FILES, NULL);
if (kd == NULL) {
ERR("error opening kvm");
} else {
init_kvm = 1;
}
return 1;
}
/* note: swapmode taken from 'top' source */
/* swapmode is rewritten by Tobias Weingartner <weingart@openbsd.org>
* to be based on the new swapctl(2) system call. */
static int swapmode(int *used, int *total)
{
struct swapent *swdev;
int nswap, rnswap, i;
nswap = swapctl(SWAP_NSWAP, 0, 0);
if (nswap == 0) {
return 0;
}
swdev = malloc(nswap * sizeof(*swdev));
if (swdev == NULL) {
return 0;
}
rnswap = swapctl(SWAP_STATS, swdev, nswap);
if (rnswap == -1) {
return 0;
}
/* if rnswap != nswap, then what? */
/* Total things up */
*total = *used = 0;
for (i = 0; i < nswap; i++) {
if (swdev[i].se_flags & SWF_ENABLE) {
*used += (swdev[i].se_inuse / (1024 / DEV_BSIZE));
*total += (swdev[i].se_nblks / (1024 / DEV_BSIZE));
}
}
free(swdev);
return 1;
}
int check_mount(char *s)
{
/* stub */
return 0;
}
void update_uptime()
{
int mib[2] = { CTL_KERN, KERN_BOOTTIME };
struct timeval boottime;
time_t now;
size_t size = sizeof(boottime);
if ((sysctl(mib, 2, &boottime, &size, NULL, 0) != -1)
&& (boottime.tv_sec != 0)) {
time(&now);
info.uptime = now - boottime.tv_sec;
} else {
ERR("Could not get uptime");
info.uptime = 0;
}
}
void update_meminfo()
{
static int mib[2] = { CTL_VM, VM_METER };
struct vmtotal vmtotal;
size_t size;
int pagesize, pageshift, swap_avail, swap_used;
pagesize = getpagesize();
pageshift = 0;
while (pagesize > 1) {
pageshift++;
pagesize >>= 1;
}
/* we only need the amount of log(2)1024 for our conversion */
pageshift -= LOG1024;
/* get total -- systemwide main memory usage structure */
size = sizeof(vmtotal);
if (sysctl(mib, 2, &vmtotal, &size, NULL, 0) < 0) {
warn("sysctl failed");
bzero(&vmtotal, sizeof(vmtotal));
}
info.memmax = pagetok(vmtotal.t_rm) + pagetok(vmtotal.t_free);
info.mem = pagetok(vmtotal.t_rm);
info.memeasyfree = info.memfree = info.memmax - info.mem;
if ((swapmode(&swap_used, &swap_avail)) >= 0) {
info.swapmax = swap_avail;
info.swap = swap_used;
} else {
info.swapmax = 0;
info.swap = 0;
}
}
void update_net_stats()
{
struct net_stat *ns;
double delta;
long long r, t, last_recv, last_trans;
struct ifaddrs *ifap, *ifa;
struct if_data *ifd;
/* get delta */
delta = current_update_time - last_update_time;
if (delta <= 0.0001) {
return;
}
if (getifaddrs(&ifap) < 0) {
return;
}
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *) ifa->ifa_name);
if (ifa->ifa_flags & IFF_UP) {
struct ifaddrs *iftmp;
ns->up = 1;
last_recv = ns->recv;
last_trans = ns->trans;
if (ifa->ifa_addr->sa_family != AF_LINK) {
continue;
}
for (iftmp = ifa->ifa_next;
iftmp != NULL && strcmp(ifa->ifa_name, iftmp->ifa_name) == 0;
iftmp = iftmp->ifa_next) {
if (iftmp->ifa_addr->sa_family == AF_INET) {
memcpy(&(ns->addr), iftmp->ifa_addr,
iftmp->ifa_addr->sa_len);
}
}
ifd = (struct if_data *) ifa->ifa_data;
r = ifd->ifi_ibytes;
t = ifd->ifi_obytes;
if (r < ns->last_read_recv) {
ns->recv += ((long long) 4294967295U - ns->last_read_recv) + r;
} else {
ns->recv += (r - ns->last_read_recv);
}
ns->last_read_recv = r;
if (t < ns->last_read_trans) {
ns->trans += (long long) 4294967295U - ns->last_read_trans + t;
} else {
ns->trans += (t - ns->last_read_trans);
}
ns->last_read_trans = t;
/* calculate speeds */
ns->recv_speed = (ns->recv - last_recv) / delta;
ns->trans_speed = (ns->trans - last_trans) / delta;
} else {
ns->up = 0;
}
}
freeifaddrs(ifap);
}
void update_total_processes()
{
int n_processes;
kvm_init();
kvm_getprocs(kd, KERN_PROC_ALL, 0, &n_processes);
info.procs = n_processes;
}
void update_running_processes()
{
struct kinfo_proc2 *p;
int n_processes;
int i, cnt = 0;
kvm_init();
int max_size = sizeof(struct kinfo_proc2);
p = kvm_getproc2(kd, KERN_PROC_ALL, 0, max_size, &n_processes);
for (i = 0; i < n_processes; i++) {
if (p[i].p_stat == SRUN) {
cnt++;
}
}
info.run_procs = cnt;
}
/* new SMP code can be enabled by commenting the following line */
#define OLDCPU
#ifdef OLDCPU
struct cpu_load_struct {
unsigned long load[5];
};
struct cpu_load_struct fresh = { {0, 0, 0, 0, 0} };
long cpu_used, oldtotal, oldused;
#else
#include <assert.h>
int64_t *fresh = NULL;
/* XXX is 8 enough? - What's the constant for MAXCPU? */
/* allocate this with malloc would be better */
int64_t oldtotal[8], oldused[8];
#endif
void get_cpu_count()
{
int cpu_count = 1; /* default to 1 cpu */
#ifndef OLDCPU
int mib[2] = { CTL_HW, HW_NCPU };
size_t len = sizeof(cpu_count);
if (sysctl(mib, 2, &cpu_count, &len, NULL, 0) != 0) {
ERR("error getting cpu count, defaulting to 1");
}
#endif
info.cpu_count = cpu_count;
info.cpu_usage = malloc(info.cpu_count * sizeof(float));
if (info.cpu_usage == NULL) {
CRIT_ERR("malloc");
}
#ifndef OLDCPU
assert(fresh == NULL); /* XXX Is this leaking memory? */
/* XXX Where shall I free this? */
if (NULL == (fresh = calloc(cpu_count, sizeof(int64_t) * CPUSTATES))) {
CRIT_ERR("calloc");
}
#endif
}
void update_cpu_usage()
{
#ifdef OLDCPU
int mib[2] = { CTL_KERN, KERN_CPTIME };
long used, total;
long cp_time[CPUSTATES];
size_t len = sizeof(cp_time);
#else
size_t size;
unsigned int i;
#endif
/* add check for !info.cpu_usage since that mem is freed on a SIGUSR1 */
if ((cpu_setup == 0) || (!info.cpu_usage)) {
get_cpu_count();
cpu_setup = 1;
}
#ifdef OLDCPU
if (sysctl(mib, 2, &cp_time, &len, NULL, 0) < 0) {
ERR("Cannot get kern.cp_time");
}
fresh.load[0] = cp_time[CP_USER];
fresh.load[1] = cp_time[CP_NICE];
fresh.load[2] = cp_time[CP_SYS];
fresh.load[3] = cp_time[CP_IDLE];
fresh.load[4] = cp_time[CP_IDLE];
used = fresh.load[0] + fresh.load[1] + fresh.load[2];
total = fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3];
if ((total - oldtotal) != 0) {
info.cpu_usage[0] = ((double) (used - oldused)) /
(double) (total - oldtotal);
} else {
info.cpu_usage[0] = 0;
}
oldused = used;
oldtotal = total;
#else
if (info.cpu_count > 1) {
size = CPUSTATES * sizeof(int64_t);
for (i = 0; i < info.cpu_count; i++) {
int cp_time_mib[] = { CTL_KERN, KERN_CPTIME2, i };
if (sysctl(cp_time_mib, 3, &(fresh[i * CPUSTATES]), &size, NULL, 0)
< 0) {
ERR("sysctl kern.cp_time2 failed");
}
}
} else {
int cp_time_mib[] = { CTL_KERN, KERN_CPTIME };
long cp_time_tmp[CPUSTATES];
size = sizeof(cp_time_tmp);
if (sysctl(cp_time_mib, 2, cp_time_tmp, &size, NULL, 0) < 0) {
ERR("sysctl kern.cp_time failed");
}
for (i = 0; i < CPUSTATES; i++) {
fresh[i] = (int64_t) cp_time_tmp[i];
}
}
/* XXX Do sg with this int64_t => long => double ? float hell. */
for (i = 0; i < info.cpu_count; i++) {
int64_t used, total;
int at = i * CPUSTATES;
used = fresh[at + CP_USER] + fresh[at + CP_NICE] + fresh[at + CP_SYS];
total = used + fresh[at + CP_IDLE];
if ((total - oldtotal[i]) != 0) {
info.cpu_usage[i] = ((double) (used - oldused[i])) /
(double) (total - oldtotal[i]);
} else {
info.cpu_usage[i] = 0;
}
oldused[i] = used;
oldtotal[i] = total;
}
#endif
}
void update_load_average()
{
double v[3];
getloadavg(v, 3);
info.loadavg[0] = (float) v[0];
info.loadavg[1] = (float) v[1];
info.loadavg[2] = (float) v[2];
}
/* read sensors from sysctl */
void update_obsd_sensors()
{
int sensor_cnt, dev, numt, mib[5] = { CTL_HW, HW_SENSORS, 0, 0, 0 };
struct sensor sensor;
struct sensordev sensordev;
size_t slen, sdlen;
enum sensor_type type;
slen = sizeof(sensor);
sdlen = sizeof(sensordev);
sensor_cnt = 0;
dev = obsd_sensors.device; // FIXME: read more than one device
/* for (dev = 0; dev < MAXSENSORDEVICES; dev++) { */
mib[2] = dev;
if (sysctl(mib, 3, &sensordev, &sdlen, NULL, 0) == -1) {
if (errno != ENOENT) {
warn("sysctl");
}
return;
// continue;
}
for (type = 0; type < SENSOR_MAX_TYPES; type++) {
mib[3] = type;
for (numt = 0; numt < sensordev.maxnumt[type]; numt++) {
mib[4] = numt;
if (sysctl(mib, 5, &sensor, &slen, NULL, 0) == -1) {
if (errno != ENOENT) {
warn("sysctl");
}
continue;
}
if (sensor.flags & SENSOR_FINVALID) {
continue;
}
switch (type) {
case SENSOR_TEMP:
obsd_sensors.temp[dev][sensor.numt] =
(sensor.value - 273150000) / 1000000.0;
break;
case SENSOR_FANRPM:
obsd_sensors.fan[dev][sensor.numt] = sensor.value;
break;
case SENSOR_VOLTS_DC:
obsd_sensors.volt[dev][sensor.numt] =
sensor.value / 1000000.0;
break;
default:
break;
}
sensor_cnt++;
}
}
/* } */
init_sensors = 1;
}
/* chipset vendor */
void get_obsd_vendor(char *buf, size_t client_buffer_size)
{
int mib[2];
mib[0] = CTL_HW;
mib[1] = HW_VENDOR;
char vendor[64];
size_t size = sizeof(vendor);
if (sysctl(mib, 2, vendor, &size, NULL, 0) == -1) {
ERR("error reading vendor");
snprintf(buf, client_buffer_size, "unknown");
} else {
snprintf(buf, client_buffer_size, "%s", vendor);
}
}
/* chipset name */
void get_obsd_product(char *buf, size_t client_buffer_size)
{
int mib[2];
mib[0] = CTL_HW;
mib[1] = HW_PRODUCT;
char product[64];
size_t size = sizeof(product);
if (sysctl(mib, 2, product, &size, NULL, 0) == -1) {
ERR("error reading product");
snprintf(buf, client_buffer_size, "unknown");
} else {
snprintf(buf, client_buffer_size, "%s", product);
}
}
/* rdtsc() and get_freq_dynamic() copied from linux.c */
#if defined(__i386) || defined(__x86_64)
__inline__ unsigned long long int rdtsc()
{
unsigned long long int x;
__asm__ volatile(".byte 0x0f, 0x31":"=A" (x));
return x;
}
#endif
/* return system frequency in MHz (use divisor=1) or GHz (use divisor=1000) */
void get_freq_dynamic(char *p_client_buffer, size_t client_buffer_size,
const char *p_format, int divisor)
{
#if defined(__i386) || defined(__x86_64)
struct timezone tz;
struct timeval tvstart, tvstop;
unsigned long long cycles[2]; /* gotta be 64 bit */
unsigned int microseconds; /* total time taken */
memset(&tz, 0, sizeof(tz));
/* get this function in cached memory */
gettimeofday(&tvstart, &tz);
cycles[0] = rdtsc();
gettimeofday(&tvstart, &tz);
/* we don't trust that this is any specific length of time */
usleep(100);
cycles[1] = rdtsc();
gettimeofday(&tvstop, &tz);
microseconds = ((tvstop.tv_sec - tvstart.tv_sec) * 1000000) +
(tvstop.tv_usec - tvstart.tv_usec);
snprintf(p_client_buffer, client_buffer_size, p_format,
(float) ((cycles[1] - cycles[0]) / microseconds) / divisor);
#else
get_freq(p_client_buffer, client_buffer_size, p_format, divisor, 1);
#endif
}
/* void */
char get_freq(char *p_client_buffer, size_t client_buffer_size,
const char *p_format, int divisor, unsigned int cpu)
{
int freq = cpu;
int mib[2] = { CTL_HW, HW_CPUSPEED };
if (!p_client_buffer || client_buffer_size <= 0 || !p_format
|| divisor <= 0) {
return 0;
}
size_t size = sizeof(freq);
if (sysctl(mib, 2, &freq, &size, NULL, 0) == 0) {
snprintf(p_client_buffer, client_buffer_size, p_format,
(float) freq / divisor);
} else {
snprintf(p_client_buffer, client_buffer_size, p_format, 0.0f);
}
return 1;
}
void update_top()
{
proc_find_top(info.cpu, info.memu);
}
#if 0
/* deprecated, will rewrite this soon in update_net_stats() -hifi */
void update_wifi_stats()
{
struct net_stat *ns;
struct ifaddrs *ifap, *ifa;
struct ifmediareq ifmr;
struct ieee80211_nodereq nr;
struct ieee80211_bssid bssid;
int s, ibssid;
/* Get iface table */
if (getifaddrs(&ifap) < 0) {
return;
}
for (ifa = ifap; ifa; ifa = ifa->ifa_next) {
ns = get_net_stat((const char *) ifa->ifa_name);
s = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
/* Get media type */
bzero(&ifmr, sizeof(ifmr));
strlcpy(ifmr.ifm_name, ifa->ifa_name, IFNAMSIZ);
if (ioctl(s, SIOCGIFMEDIA, (caddr_t) &ifmr) < 0) {
close(s);
return;
}
/* We can monitor only wireless interfaces
* which are not in hostap mode */
if ((ifmr.ifm_active & IFM_IEEE80211)
&& !(ifmr.ifm_active & IFM_IEEE80211_HOSTAP)) {
/* Get wi status */
memset(&bssid, 0, sizeof(bssid));
strlcpy(bssid.i_name, ifa->ifa_name, sizeof(bssid.i_name));
ibssid = ioctl(s, SIOCG80211BSSID, &bssid);
bzero(&nr, sizeof(nr));
bcopy(bssid.i_bssid, &nr.nr_macaddr, sizeof(nr.nr_macaddr));
strlcpy(nr.nr_ifname, ifa->ifa_name, sizeof(nr.nr_ifname));
if (ioctl(s, SIOCG80211NODE, &nr) == 0 && nr.nr_rssi) {
ns->linkstatus = nr.nr_rssi;
}
}
cleanup:
close(s);
}
}
#endif
void update_diskio()
{
return; /* XXX: implement? hifi: not sure how */
}
/* While topless is obviously better, top is also not bad. */
int comparecpu(const void *a, const void *b)
{
if (((struct process *) a)->amount > ((struct process *) b)->amount) {
return -1;
}
if (((struct process *) a)->amount < ((struct process *) b)->amount) {
return 1;
}
return 0;
}
int comparemem(const void *a, const void *b)
{
if (((struct process *) a)->totalmem > ((struct process *) b)->totalmem) {
return -1;
}
if (((struct process *) a)->totalmem < ((struct process *) b)->totalmem) {
return 1;
}
return 0;
}
inline void proc_find_top(struct process **cpu, struct process **mem)
{
struct kinfo_proc2 *p;
int n_processes;
int i, j = 0;
struct process *processes;
int mib[2];
int total_pages;
int pagesize = getpagesize();
/* we get total pages count again to be sure it is up to date */
mib[0] = CTL_HW;
mib[1] = HW_USERMEM;
size_t size = sizeof(total_pages);
if (sysctl(mib, 2, &total_pages, &size, NULL, 0) == -1) {
ERR("error reading nmempages");
}
int max_size = sizeof(struct kinfo_proc2);
p = kvm_getproc2(kd, KERN_PROC_ALL, 0, max_size, &n_processes);
processes = malloc(n_processes * sizeof(struct process));
for (i = 0; i < n_processes; i++) {
if (!((p[i].p_flag & P_SYSTEM)) && p[i].p_comm != NULL) {
processes[j].pid = p[i].p_pid;
processes[j].name = strndup(p[i].p_comm, text_buffer_size);
processes[j].amount = 100.0 * p[i].p_pctcpu / FSCALE;
processes[j].totalmem = (float) (p[i].p_vm_rssize * pagesize /
(float) total_pages) * 100.0;
j++;
}
}
qsort(processes, j - 1, sizeof(struct process), comparemem);
for (i = 0; i < 10; i++) {
struct process *tmp, *ttmp;
tmp = malloc(sizeof(struct process));
tmp->pid = processes[i].pid;
tmp->amount = processes[i].amount;
tmp->totalmem = processes[i].totalmem;
tmp->name = strndup(processes[i].name, text_buffer_size);
ttmp = mem[i];
mem[i] = tmp;
if (ttmp != NULL) {
free(ttmp->name);
free(ttmp);
}
}
qsort(processes, j - 1, sizeof(struct process), comparecpu);
for (i = 0; i < 10; i++) {
struct process *tmp, *ttmp;
tmp = malloc(sizeof(struct process));
tmp->pid = processes[i].pid;
tmp->amount = processes[i].amount;
tmp->totalmem = processes[i].totalmem;
tmp->name = strndup(processes[i].name, text_buffer_size);
ttmp = cpu[i];
cpu[i] = tmp;
if (ttmp != NULL) {
free(ttmp->name);
free(ttmp);
}
}
for (i = 0; i < j; i++) {
free(processes[i].name);
}
free(processes);
}
#if defined(i386) || defined(__i386__)
#define APMDEV "/dev/apm"
#define APM_UNKNOWN 255
int apm_getinfo(int fd, apm_info_t aip)
{
if (ioctl(fd, APM_IOC_GETPOWER, aip) == -1) {
return -1;
}
return 0;
}
char *get_apm_adapter()
{
int fd;
struct apm_power_info info;
char *out;
out = (char *) calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if (apm_getinfo(fd, &info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
switch (info.ac_state) {
case APM_AC_OFF:
strncpy(out, "off-line", 16);
return out;
break;
case APM_AC_ON:
if (info.battery_state == APM_BATT_CHARGING) {
strncpy(out, "charging", 16);
return out;
} else {
strncpy(out, "on-line", 16);
return out;
}
break;
default:
strncpy(out, "unknown", 16);
return out;
break;
}
}
char *get_apm_battery_life()
{
int fd;
u_int batt_life;
struct apm_power_info info;
char *out;
out = (char *) calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if (apm_getinfo(fd, &info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_life = info.battery_life;
if (batt_life <= 100) {
snprintf(out, 16, "%d%%", batt_life);
return out;
} else {
strncpy(out, "ERR", 16);
}
return out;
}
char *get_apm_battery_time()
{
int fd;
int batt_time;
int h, m;
struct apm_power_info info;
char *out;
out = (char *) calloc(16, sizeof(char));
fd = open(APMDEV, O_RDONLY);
if (fd < 0) {
strncpy(out, "ERR", 16);
return out;
}
if (apm_getinfo(fd, &info) != 0) {
close(fd);
strncpy(out, "ERR", 16);
return out;
}
close(fd);
batt_time = info.minutes_left;
if (batt_time == -1) {
strncpy(out, "unknown", 16);
} else {
h = batt_time / 60;
m = batt_time % 60;
snprintf(out, 16, "%2d:%02d", h, m);
}
return out;
}
#endif
/* empty stubs so conky links */
void prepare_update()
{
}
void update_entropy(void)
{
}
void free_all_processes(void)
{
}