conky/src/netbsd.cc

326 lines
8.1 KiB
C++

/*
*
* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2004, Hannu Saransaari and Lauri Hakkarainen
* Copyright (c) 2005-2018 Brenden Matthews, Philip Kovacs, et. al.
* (see AUTHORS)
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "net_stat.h"
#include "netbsd.h"
static kvm_t *kd = nullptr;
int kd_init = 0, nkd_init = 0;
u_int32_t sensvalue;
char errbuf[_POSIX2_LINE_MAX];
static int init_kvm(void) {
if (kd_init) { return 0; }
kd = kvm_openfiles(nullptr, NULL, NULL, KVM_NO_FILES, errbuf);
if (kd == nullptr) {
warnx("cannot kvm_openfiles: %s", errbuf);
return -1;
}
kd_init = 1;
return 0;
}
static int swapmode(int *retavail, int *retfree) {
int n;
struct swapent *sep;
*retavail = 0;
*retfree = 0;
n = swapctl(SWAP_NSWAP, 0, 0);
if (n < 1) {
warn("could not get swap information");
return 0;
}
sep = (struct swapent *)malloc(n * (sizeof(*sep)));
if (sep == nullptr) {
warn("memory allocation failed");
return 0;
}
if (swapctl(SWAP_STATS, (void *)sep, n) < n) {
warn("could not get swap stats");
return 0;
}
for (; n > 0; n--) {
*retavail += (int)dbtob(sep[n - 1].se_nblks);
*retfree += (int)dbtob(sep[n - 1].se_nblks - sep[n - 1].se_inuse);
}
*retavail = (int)(*retavail / 1024);
*retfree = (int)(*retfree / 1024);
return 1;
}
void prepare_update() {}
void update_uptime() {
int mib[2] = {CTL_KERN, KERN_BOOTTIME};
struct timeval boottime;
time_t now;
int size = sizeof(boottime);
if ((sysctl(mib, 2, &boottime, &size, nullptr, 0) != -1) &&
(boottime.tv_sec != 0)) {
time(&now);
info.uptime = now - boottime.tv_sec;
} else {
warn("could not get uptime");
info.uptime = 0;
}
}
int check_mount(struct text_object *obj) {
/* stub */
(void)obj;
return 0;
}
void update_meminfo() {
int mib[] = {CTL_VM, VM_UVMEXP2};
int total_pages, inactive_pages, free_pages;
int swap_avail, swap_free;
const int pagesize = getpagesize();
struct uvmexp_sysctl uvmexp;
size_t size = sizeof(uvmexp);
if (sysctl(mib, 2, &uvmexp, &size, nullptr, 0) < 0) {
warn("could not get memory info");
return;
}
total_pages = uvmexp.npages;
free_pages = uvmexp.free;
inactive_pages = uvmexp.inactive;
info.memmax = (total_pages * pagesize) >> 10;
info.mem = ((total_pages - free_pages - inactive_pages) * pagesize) >> 10;
info.memwithbuffers = info.mem;
info.memeasyfree = info.memfree = info.memmax - info.mem;
if (swapmode(&swap_avail, &swap_free) >= 0) {
info.swapmax = swap_avail;
info.swap = (swap_avail - swap_free);
info.swapfree = swap_free;
}
}
void update_net_stats() {
int i;
double delta;
struct ifnet ifnet;
struct ifnet_head ifhead; /* interfaces are in a tail queue */
u_long ifnetaddr;
static struct nlist namelist[] = {{"_ifnet"}, {nullptr}};
static kvm_t *nkd;
if (!nkd_init) {
nkd = kvm_openfiles(nullptr, NULL, NULL, O_RDONLY, errbuf);
if (nkd == nullptr) {
warnx("cannot kvm_openfiles: %s", errbuf);
warnx("maybe you need to setgid kmem this program?");
return;
} else if (kvm_nlist(nkd, namelist) != 0) {
warn("cannot kvm_nlist");
return;
} else {
nkd_init = 1;
}
}
if (kvm_read(nkd, (u_long)namelist[0].n_value, (void *)&ifhead,
sizeof(ifhead)) < 0) {
warn("cannot kvm_read");
return;
}
/* get delta */
delta = current_update_time - last_update_time;
if (delta <= 0.0001) { return; }
for (i = 0, ifnetaddr = (u_long)ifhead.tqh_first;
ifnet.if_list.tqe_next && i < 16;
ifnetaddr = (u_long)ifnet.if_list.tqe_next, i++) {
struct net_stat *ns;
long long last_recv, last_trans;
kvm_read(nkd, (u_long)ifnetaddr, (void *)&ifnet, sizeof(ifnet));
ns = get_net_stat(ifnet.if_xname, nullptr, NULL);
ns->up = 1;
last_recv = ns->recv;
last_trans = ns->trans;
if (ifnet.if_ibytes < ns->last_read_recv) {
ns->recv +=
((long long)4294967295U - ns->last_read_recv) + ifnet.if_ibytes;
} else {
ns->recv += (ifnet.if_ibytes - ns->last_read_recv);
}
ns->last_read_recv = ifnet.if_ibytes;
if (ifnet.if_obytes < ns->last_read_trans) {
ns->trans +=
((long long)4294967295U - ns->last_read_trans) + ifnet.if_obytes;
} else {
ns->trans += (ifnet.if_obytes - ns->last_read_trans);
}
ns->last_read_trans = ifnet.if_obytes;
ns->recv += (ifnet.if_ibytes - ns->last_read_recv);
ns->last_read_recv = ifnet.if_ibytes;
ns->trans += (ifnet.if_obytes - ns->last_read_trans);
ns->last_read_trans = ifnet.if_obytes;
ns->recv_speed = (ns->recv - last_recv) / delta;
ns->trans_speed = (ns->trans - last_trans) / delta;
}
}
int update_total_processes() {
/* It's easier to use kvm here than sysctl */
int n_processes;
info.procs = 0;
if (init_kvm() < 0) {
return;
} else {
kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2),
&n_processes);
}
info.procs = n_processes;
}
void update_running_processes() {
struct kinfo_proc2 *p;
int n_processes;
int i, cnt = 0;
info.run_procs = 0;
if (init_kvm() < 0) {
return;
} else {
p = kvm_getproc2(kd, KERN_PROC_ALL, 0, sizeof(struct kinfo_proc2),
&n_processes);
for (i = 0; i < n_processes; i++) {
if (p[i].p_stat == LSRUN || p[i].p_stat == LSIDL ||
p[i].p_stat == LSONPROC) {
cnt++;
}
}
}
info.run_procs = cnt;
}
struct cpu_load_struct {
unsigned long load[5];
};
struct cpu_load_struct fresh = {{0, 0, 0, 0, 0}};
long cpu_used, oldtotal, oldused;
void update_cpu_usage() {
long used, total;
static u_int64_t cp_time[CPUSTATES];
size_t len = sizeof(cp_time);
info.cpu_usage = 0;
if (sysctlbyname("kern.cp_time", &cp_time, &len, nullptr, 0) < 0) {
warn("cannot get kern.cp_time");
}
fresh.load[0] = cp_time[CP_USER];
fresh.load[1] = cp_time[CP_NICE];
fresh.load[2] = cp_time[CP_SYS];
fresh.load[3] = cp_time[CP_IDLE];
fresh.load[4] = cp_time[CP_IDLE];
used = fresh.load[0] + fresh.load[1] + fresh.load[2];
total = fresh.load[0] + fresh.load[1] + fresh.load[2] + fresh.load[3];
if ((total - oldtotal) != 0) {
info.cpu_usage = ((double)(used - oldused)) / (double)(total - oldtotal);
} else {
info.cpu_usage = 0;
}
oldused = used;
oldtotal = total;
}
void update_load_average() {
double v[3];
getloadavg(v, 3);
info.loadavg[0] = (float)v[0];
info.loadavg[1] = (float)v[1];
info.loadavg[2] = (float)v[2];
}
double get_acpi_temperature(int fd) { return -1; }
void get_battery_stuff(char *buf, unsigned int n, const char *bat, int item) {}
int open_acpi_temperature(const char *name) { return -1; }
void get_acpi_ac_adapter(char *p_client_buffer, size_t client_buffer_size,
const char *adapter) {
(void)adapter; // only linux uses this
if (!p_client_buffer || client_buffer_size <= 0) { return; }
/* not implemented */
memset(p_client_buffer, 0, client_buffer_size);
}
/* char *get_acpi_fan() */
void get_acpi_fan(char *p_client_buffer, size_t client_buffer_size) {
if (!p_client_buffer || client_buffer_size <= 0) { return; }
/* not implemented */
memset(p_client_buffer, 0, client_buffer_size);
}
int get_entropy_avail(unsigned int *val) { return 1; }
int get_entropy_poolsize(unsigned int *val) { return 1; }