1
0
mirror of https://github.com/Llewellynvdm/conky.git synced 2024-12-31 22:11:45 +00:00
conky/src/top.c
Pavel Labath 8905dbb313 Add uid to "top" output (sf.net #3178916)
original patch submitted by Thomas Wiegner, I added support for printing of raw uids.
2011-10-10 21:54:18 +02:00

1081 lines
26 KiB
C

/* -*- mode: c; c-basic-offset: 4; tab-width: 4; indent-tabs-mode: t -*-
* vim: ts=4 sw=4 noet ai cindent syntax=c
*
* Conky, a system monitor, based on torsmo
*
* Any original torsmo code is licensed under the BSD license
*
* All code written since the fork of torsmo is licensed under the GPL
*
* Please see COPYING for details
*
* Copyright (c) 2005 Adi Zaimi, Dan Piponi <dan@tanelorn.demon.co.uk>,
* Dave Clark <clarkd@skynet.ca>
* Copyright (c) 2005-2010 Brenden Matthews, Philip Kovacs, et. al.
* (see AUTHORS)
* All rights reserved.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "top.h"
#include "logging.h"
static unsigned long g_time = 0;
static unsigned long long previous_total = 0;
static struct process *first_process = 0;
/* a simple hash table to speed up find_process() */
struct proc_hash_entry {
struct proc_hash_entry *next;
struct process *proc;
};
static struct proc_hash_entry proc_hash_table[256];
static void hash_process(struct process *p)
{
struct proc_hash_entry *phe;
static char first_run = 1;
/* better make sure all next pointers are zero upon first access */
if (first_run) {
memset(proc_hash_table, 0, sizeof(struct proc_hash_entry) * 256);
first_run = 0;
}
/* get the bucket head */
phe = &proc_hash_table[p->pid % 256];
/* find the bucket's end */
while (phe->next)
phe = phe->next;
/* append process */
phe->next = malloc(sizeof(struct proc_hash_entry));
memset(phe->next, 0, sizeof(struct proc_hash_entry));
phe->next->proc = p;
}
static void unhash_process(struct process *p)
{
struct proc_hash_entry *phe, *tmp;
/* get the bucket head */
phe = &proc_hash_table[p->pid % 256];
/* find the entry pointing to p and drop it */
while (phe->next) {
if (phe->next->proc == p) {
tmp = phe->next;
phe->next = phe->next->next;
free(tmp);
return;
}
phe = phe->next;
}
}
static void __unhash_all_processes(struct proc_hash_entry *phe)
{
if (phe->next)
__unhash_all_processes(phe->next);
free(phe->next);
}
static void unhash_all_processes(void)
{
int i;
for (i = 0; i < 256; i++) {
__unhash_all_processes(&proc_hash_table[i]);
proc_hash_table[i].next = NULL;
}
}
struct process *get_first_process(void)
{
return first_process;
}
void free_all_processes(void)
{
struct process *next = NULL, *pr = first_process;
while (pr) {
next = pr->next;
if (pr->name) {
free(pr->name);
}
free(pr);
pr = next;
}
first_process = NULL;
/* drop the whole hash table */
unhash_all_processes();
}
struct process *get_process_by_name(const char *name)
{
struct process *p = first_process;
while (p) {
if (p->name && !strcmp(p->name, name))
return p;
p = p->next;
}
return 0;
}
static struct process *find_process(pid_t pid)
{
struct proc_hash_entry *phe;
phe = &proc_hash_table[pid % 256];
while (phe->next) {
if (phe->next->proc->pid == pid)
return phe->next->proc;
phe = phe->next;
}
return 0;
}
/* Create a new process object and insert it into the process list */
static struct process *new_process(int p)
{
struct process *process;
process = (struct process *) malloc(sizeof(struct process));
// clean up memory first
memset(process, 0, sizeof(struct process));
/* Do stitching necessary for doubly linked list */
process->name = 0;
process->previous = 0;
process->next = first_process;
if (process->next) {
process->next->previous = process;
}
first_process = process;
process->pid = p;
process->time_stamp = 0;
process->previous_user_time = ULONG_MAX;
process->previous_kernel_time = ULONG_MAX;
#ifdef IOSTATS
process->previous_read_bytes = ULLONG_MAX;
process->previous_write_bytes = ULLONG_MAX;
#endif /* IOSTATS */
process->counted = 1;
/* process_find_name(process); */
/* add the process to the hash table */
hash_process(process);
return process;
}
/******************************************
* Functions *
******************************************/
/******************************************
* Extract information from /proc *
******************************************/
/* These are the guts that extract information out of /proc.
* Anyone hoping to port wmtop should look here first. */
static int process_parse_stat(struct process *process)
{
char line[BUFFER_LEN] = { 0 }, filename[BUFFER_LEN], procname[BUFFER_LEN];
char state[4];
int ps;
unsigned long user_time = 0;
unsigned long kernel_time = 0;
int rc;
char *r, *q;
int endl;
int nice_val;
char *lparen, *rparen;
struct stat process_stat;
snprintf(filename, sizeof(filename), PROCFS_TEMPLATE, process->pid);
ps = open(filename, O_RDONLY);
if (ps < 0) {
/* The process must have finished in the last few jiffies! */
return 1;
}
if (fstat(ps, &process_stat) != 0){
return 1;
}
process->uid=process_stat.st_uid;
/* Mark process as up-to-date. */
process->time_stamp = g_time;
rc = read(ps, line, sizeof(line));
close(ps);
if (rc < 0) {
return 1;
}
/* Extract cpu times from data in /proc filesystem */
lparen = strchr(line, '(');
rparen = strrchr(line, ')');
if(!lparen || !rparen || rparen < lparen)
return 1; // this should not happen
rc = MIN((unsigned)(rparen - lparen - 1), sizeof(procname) - 1);
strncpy(procname, lparen + 1, rc);
procname[rc] = '\0';
rc = sscanf(rparen + 1, "%3s %*s %*s %*s %*s %*s %*s %*s %*s %*s %*s %lu "
"%lu %*s %*s %*s %d %*s %*s %*s %llu %llu", state, &process->user_time,
&process->kernel_time, &nice_val, &process->vsize, &process->rss);
if (rc < 6) {
NORM_ERR("scaning data for %s failed, got only %d fields", procname, rc);
return 1;
}
if(state[0]=='R')
++ info.run_procs;
/* remove any "kdeinit: " */
if (procname == strstr(procname, "kdeinit")) {
snprintf(filename, sizeof(filename), PROCFS_CMDLINE_TEMPLATE,
process->pid);
ps = open(filename, O_RDONLY);
if (ps < 0) {
/* The process must have finished in the last few jiffies! */
return 1;
}
endl = read(ps, line, sizeof(line));
close(ps);
/* null terminate the input */
line[endl] = 0;
/* account for "kdeinit: " */
if ((char *) line == strstr(line, "kdeinit: ")) {
r = ((char *) line) + 9;
} else {
r = (char *) line;
}
q = procname;
/* stop at space */
while (*r && *r != ' ') {
*q++ = *r++;
}
*q = 0;
}
if (process->name) {
free(process->name);
}
process->name = strndup(procname, text_buffer_size);
process->rss *= getpagesize();
process->total_cpu_time = process->user_time + process->kernel_time;
if (process->previous_user_time == ULONG_MAX) {
process->previous_user_time = process->user_time;
}
if (process->previous_kernel_time == ULONG_MAX) {
process->previous_kernel_time = process->kernel_time;
}
/* strangely, the values aren't monotonous */
if (process->previous_user_time > process->user_time)
process->previous_user_time = process->user_time;
if (process->previous_kernel_time > process->kernel_time)
process->previous_kernel_time = process->kernel_time;
/* store the difference of the user_time */
user_time = process->user_time - process->previous_user_time;
kernel_time = process->kernel_time - process->previous_kernel_time;
/* backup the process->user_time for next time around */
process->previous_user_time = process->user_time;
process->previous_kernel_time = process->kernel_time;
/* store only the difference of the user_time here... */
process->user_time = user_time;
process->kernel_time = kernel_time;
return 0;
}
#ifdef IOSTATS
static int process_parse_io(struct process *process)
{
static const char *read_bytes_str="read_bytes:";
static const char *write_bytes_str="write_bytes:";
char line[BUFFER_LEN] = { 0 }, filename[BUFFER_LEN];
int ps;
int rc;
char *pos, *endpos;
unsigned long long read_bytes, write_bytes;
snprintf(filename, sizeof(filename), PROCFS_TEMPLATE_IO, process->pid);
ps = open(filename, O_RDONLY);
if (ps < 0) {
/* The process must have finished in the last few jiffies!
* Or, the kernel doesn't support I/O accounting.
*/
return 1;
}
rc = read(ps, line, sizeof(line));
close(ps);
if (rc < 0) {
return 1;
}
pos = strstr(line, read_bytes_str);
if (pos == NULL) {
/* these should not happen (unless the format of the file changes) */
return 1;
}
pos += strlen(read_bytes_str);
process->read_bytes = strtoull(pos, &endpos, 10);
if (endpos == pos) {
return 1;
}
pos = strstr(line, write_bytes_str);
if (pos == NULL) {
return 1;
}
pos += strlen(write_bytes_str);
process->write_bytes = strtoull(pos, &endpos, 10);
if (endpos == pos) {
return 1;
}
if (process->previous_read_bytes == ULLONG_MAX) {
process->previous_read_bytes = process->read_bytes;
}
if (process->previous_write_bytes == ULLONG_MAX) {
process->previous_write_bytes = process->write_bytes;
}
/* store the difference of the byte counts */
read_bytes = process->read_bytes - process->previous_read_bytes;
write_bytes = process->write_bytes - process->previous_write_bytes;
/* backup the counts for next time around */
process->previous_read_bytes = process->read_bytes;
process->previous_write_bytes = process->write_bytes;
/* store only the difference here... */
process->read_bytes = read_bytes;
process->write_bytes = write_bytes;
return 0;
}
#endif /* IOSTATS */
/******************************************
* Get process structure for process pid *
******************************************/
/* This function seems to hog all of the CPU time.
* I can't figure out why - it doesn't do much. */
static int calculate_stats(struct process *process)
{
int rc;
/* compute each process cpu usage by reading /proc/<proc#>/stat */
rc = process_parse_stat(process);
if (rc) return 1;
/* rc = process_parse_statm(process); if (rc) return 1; */
#ifdef IOSTATS
rc = process_parse_io(process);
if (rc) return 1;
#endif /* IOSTATS */
/*
* Check name against the exclusion list
*/
/* if (process->counted && exclusion_expression &&
* !regexec(exclusion_expression, process->name, 0, 0, 0))
* process->counted = 0; */
return 0;
}
/******************************************
* Update process table *
******************************************/
static int update_process_table(void)
{
DIR *dir;
struct dirent *entry;
if (!(dir = opendir("/proc"))) {
return 1;
}
info.run_procs = 0;
++g_time;
/* Get list of processes from /proc directory */
while ((entry = readdir(dir))) {
pid_t pid;
if (!entry) {
/* Problem reading list of processes */
closedir(dir);
return 1;
}
if (sscanf(entry->d_name, "%d", &pid) > 0) {
struct process *p;
p = find_process(pid);
if (!p) {
p = new_process(pid);
}
/* compute each process cpu usage */
calculate_stats(p);
}
}
closedir(dir);
return 0;
}
/******************************************
* Destroy and remove a process *
******************************************/
static void delete_process(struct process *p)
{
#if defined(PARANOID)
assert(p->id == 0x0badfeed);
/*
* Ensure that deleted processes aren't reused.
*/
p->id = 0x007babe;
#endif /* defined(PARANOID) */
/*
* Maintain doubly linked list.
*/
if (p->next)
p->next->previous = p->previous;
if (p->previous)
p->previous->next = p->next;
else
first_process = p->next;
if (p->name) {
free(p->name);
}
/* remove the process from the hash table */
unhash_process(p);
free(p);
}
/******************************************
* Strip dead process entries *
******************************************/
static void process_cleanup(void)
{
struct process *p = first_process;
while (p) {
struct process *current = p;
#if defined(PARANOID)
assert(p->id == 0x0badfeed);
#endif /* defined(PARANOID) */
p = p->next;
/* Delete processes that have died */
if (current->time_stamp != g_time) {
delete_process(current);
}
}
}
/******************************************
* Calculate cpu total *
******************************************/
#define TMPL_SHORTPROC "%*s %llu %llu %llu %llu"
#define TMPL_LONGPROC "%*s %llu %llu %llu %llu %llu %llu %llu %llu"
static unsigned long long calc_cpu_total(void)
{
unsigned long long total = 0;
unsigned long long t = 0;
int rc;
int ps;
char line[BUFFER_LEN] = { 0 };
unsigned long long cpu = 0;
unsigned long long niceval = 0;
unsigned long long systemval = 0;
unsigned long long idle = 0;
unsigned long long iowait = 0;
unsigned long long irq = 0;
unsigned long long softirq = 0;
unsigned long long steal = 0;
const char *template =
KFLAG_ISSET(KFLAG_IS_LONGSTAT) ? TMPL_LONGPROC : TMPL_SHORTPROC;
ps = open("/proc/stat", O_RDONLY);
rc = read(ps, line, sizeof(line));
close(ps);
if (rc < 0) {
return 0;
}
sscanf(line, template, &cpu, &niceval, &systemval, &idle, &iowait, &irq,
&softirq, &steal);
total = cpu + niceval + systemval + idle + iowait + irq + softirq + steal;
t = total - previous_total;
previous_total = total;
return t;
}
/******************************************
* Calculate each processes cpu *
******************************************/
inline static void calc_cpu_each(unsigned long long total)
{
struct process *p = first_process;
while (p) {
p->amount = 100.0 * (cpu_separate ? info.cpu_count : 1) *
(p->user_time + p->kernel_time) / (float) total;
p = p->next;
}
}
#ifdef IOSTATS
static void calc_io_each(void)
{
struct process *p;
unsigned long long sum = 0;
for (p = first_process; p; p = p->next)
sum += p->read_bytes + p->write_bytes;
if(sum == 0)
sum = 1; /* to avoid having NANs if no I/O occured */
for (p = first_process; p; p = p->next)
p->io_perc = 100.0 * (p->read_bytes + p->write_bytes) / (float) sum;
}
#endif /* IOSTATS */
/******************************************
* Find the top processes *
******************************************/
/* free a sp_process structure */
static void free_sp(struct sorted_process *sp)
{
free(sp);
}
/* create a new sp_process structure */
static struct sorted_process *malloc_sp(struct process *proc)
{
struct sorted_process *sp;
sp = malloc(sizeof(struct sorted_process));
memset(sp, 0, sizeof(struct sorted_process));
sp->proc = proc;
return sp;
}
/* cpu comparison function for insert_sp_element */
static int compare_cpu(struct process *a, struct process *b)
{
if (a->amount < b->amount) {
return 1;
} else if (a->amount > b->amount) {
return -1;
} else {
return 0;
}
}
/* mem comparison function for insert_sp_element */
static int compare_mem(struct process *a, struct process *b)
{
if (a->rss < b->rss) {
return 1;
} else if (a->rss > b->rss) {
return -1;
} else {
return 0;
}
}
/* CPU time comparision function for insert_sp_element */
static int compare_time(struct process *a, struct process *b)
{
return b->total_cpu_time - a->total_cpu_time;
}
#ifdef IOSTATS
/* I/O comparision function for insert_sp_element */
static int compare_io(struct process *a, struct process *b)
{
if (a->io_perc < b->io_perc) {
return 1;
} else if (a->io_perc > b->io_perc) {
return -1;
} else {
return 0;
}
}
#endif /* IOSTATS */
/* insert this process into the list in a sorted fashion,
* or destroy it if it doesn't fit on the list */
static int insert_sp_element(struct sorted_process *sp_cur,
struct sorted_process **p_sp_head, struct sorted_process **p_sp_tail,
int max_elements, int compare_funct(struct process *, struct process *))
{
struct sorted_process *sp_readthru = NULL, *sp_destroy = NULL;
int did_insert = 0, x = 0;
if (*p_sp_head == NULL) {
*p_sp_head = sp_cur;
*p_sp_tail = sp_cur;
return 1;
}
for (sp_readthru = *p_sp_head, x = 0;
sp_readthru != NULL && x < max_elements;
sp_readthru = sp_readthru->less, x++) {
if (compare_funct(sp_readthru->proc, sp_cur->proc) > 0 && !did_insert) {
/* sp_cur is bigger than sp_readthru
* so insert it before sp_readthru */
sp_cur->less = sp_readthru;
if (sp_readthru == *p_sp_head) {
/* insert as the new head of the list */
*p_sp_head = sp_cur;
} else {
/* insert inside the list */
sp_readthru->greater->less = sp_cur;
sp_cur->greater = sp_readthru->greater;
}
sp_readthru->greater = sp_cur;
/* element was inserted, so increase the counter */
did_insert = ++x;
}
}
if (x < max_elements && sp_readthru == NULL && !did_insert) {
/* sp_cur is the smallest element and list isn't full,
* so insert at the end */
(*p_sp_tail)->less = sp_cur;
sp_cur->greater = *p_sp_tail;
*p_sp_tail = sp_cur;
did_insert = x;
} else if (x >= max_elements) {
/* We inserted an element and now the list is too big by one.
* Destroy the smallest element */
sp_destroy = *p_sp_tail;
*p_sp_tail = sp_destroy->greater;
(*p_sp_tail)->less = NULL;
free_sp(sp_destroy);
}
if (!did_insert) {
/* sp_cur wasn't added to the sorted list, so destroy it */
free_sp(sp_cur);
}
return did_insert;
}
/* copy the procs in the sorted list to the array, and destroy the list */
static void sp_acopy(struct sorted_process *sp_head, struct process **ar, int max_size)
{
struct sorted_process *sp_cur, *sp_tmp;
int x;
sp_cur = sp_head;
for (x = 0; x < max_size && sp_cur != NULL; x++) {
ar[x] = sp_cur->proc;
sp_tmp = sp_cur;
sp_cur = sp_cur->less;
free_sp(sp_tmp);
}
}
/* ****************************************************************** *
* Get a sorted list of the top cpu hogs and top mem hogs. *
* Results are stored in the cpu,mem arrays in decreasing order[0-9]. *
* ****************************************************************** */
void process_find_top(struct process **cpu, struct process **mem,
struct process **ptime
#ifdef IOSTATS
, struct process **io
#endif /* IOSTATS */
)
{
struct sorted_process *spc_head = NULL, *spc_tail = NULL, *spc_cur = NULL;
struct sorted_process *spm_head = NULL, *spm_tail = NULL, *spm_cur = NULL;
struct sorted_process *spt_head = NULL, *spt_tail = NULL, *spt_cur = NULL;
#ifdef IOSTATS
struct sorted_process *spi_head = NULL, *spi_tail = NULL, *spi_cur = NULL;
#endif /* IOSTATS */
struct process *cur_proc = NULL;
unsigned long long total = 0;
if (!top_cpu && !top_mem && !top_time
#ifdef IOSTATS
&& !top_io
#endif /* IOSTATS */
&& !top_running
) {
return;
}
total = calc_cpu_total(); /* calculate the total of the processor */
update_process_table(); /* update the table with process list */
calc_cpu_each(total); /* and then the percentage for each task */
process_cleanup(); /* cleanup list from exited processes */
#ifdef IOSTATS
calc_io_each(); /* percentage of I/O for each task */
#endif /* IOSTATS */
cur_proc = first_process;
while (cur_proc != NULL) {
if (top_cpu) {
spc_cur = malloc_sp(cur_proc);
insert_sp_element(spc_cur, &spc_head, &spc_tail, MAX_SP,
&compare_cpu);
}
if (top_mem) {
spm_cur = malloc_sp(cur_proc);
insert_sp_element(spm_cur, &spm_head, &spm_tail, MAX_SP,
&compare_mem);
}
if (top_time) {
spt_cur = malloc_sp(cur_proc);
insert_sp_element(spt_cur, &spt_head, &spt_tail, MAX_SP,
&compare_time);
}
#ifdef IOSTATS
if (top_io) {
spi_cur = malloc_sp(cur_proc);
insert_sp_element(spi_cur, &spi_head, &spi_tail, MAX_SP,
&compare_io);
}
#endif /* IOSTATS */
cur_proc = cur_proc->next;
}
if (top_cpu) sp_acopy(spc_head, cpu, MAX_SP);
if (top_mem) sp_acopy(spm_head, mem, MAX_SP);
if (top_time) sp_acopy(spt_head, ptime, MAX_SP);
#ifdef IOSTATS
if (top_io) sp_acopy(spi_head, io, MAX_SP);
#endif /* IOSTATS */
}
struct top_data {
int num;
int type;
int was_parsed;
char *s;
};
int parse_top_args(const char *s, const char *arg, struct text_object *obj)
{
struct top_data *td;
char buf[64];
int n;
if (!arg) {
NORM_ERR("top needs arguments");
return 0;
}
if (obj->data.opaque) {
return 1;
}
if (s[3] == 0) {
obj->type = OBJ_top;
top_cpu = 1;
} else if (strcmp(&s[3], "_mem") == EQUAL) {
obj->type = OBJ_top_mem;
top_mem = 1;
} else if (strcmp(&s[3], "_time") == EQUAL) {
obj->type = OBJ_top_time;
top_time = 1;
#ifdef IOSTATS
} else if (strcmp(&s[3], "_io") == EQUAL) {
obj->type = OBJ_top_io;
top_io = 1;
#endif /* IOSTATS */
} else {
#ifdef IOSTATS
NORM_ERR("Must be top, top_mem, top_time or top_io");
#else /* IOSTATS */
NORM_ERR("Must be top, top_mem or top_time");
#endif /* IOSTATS */
return 0;
}
obj->data.opaque = td = malloc(sizeof(struct top_data));
memset(td, 0, sizeof(struct top_data));
td->s = strndup(arg, text_buffer_size);
if (sscanf(arg, "%63s %i", buf, &n) == 2) {
if (strcmp(buf, "name") == EQUAL) {
td->type = TOP_NAME;
} else if (strcmp(buf, "cpu") == EQUAL) {
td->type = TOP_CPU;
} else if (strcmp(buf, "pid") == EQUAL) {
td->type = TOP_PID;
} else if (strcmp(buf, "mem") == EQUAL) {
td->type = TOP_MEM;
} else if (strcmp(buf, "time") == EQUAL) {
td->type = TOP_TIME;
} else if (strcmp(buf, "mem_res") == EQUAL) {
td->type = TOP_MEM_RES;
} else if (strcmp(buf, "mem_vsize") == EQUAL) {
td->type = TOP_MEM_VSIZE;
} else if (strcmp(buf, "uid") == EQUAL) {
td->type = TOP_UID;
} else if (strcmp(buf, "user") == EQUAL) {
td->type = TOP_USER;
#ifdef IOSTATS
} else if (strcmp(buf, "io_read") == EQUAL) {
td->type = TOP_READ_BYTES;
} else if (strcmp(buf, "io_write") == EQUAL) {
td->type = TOP_WRITE_BYTES;
} else if (strcmp(buf, "io_perc") == EQUAL) {
td->type = TOP_IO_PERC;
#endif /* IOSTATS */
} else {
NORM_ERR("invalid type arg for top");
#ifdef IOSTATS
NORM_ERR("must be one of: name, cpu, pid, mem, time, mem_res, mem_vsize, uid, user"
"io_read, io_write, io_perc");
#else /* IOSTATS */
NORM_ERR("must be one of: name, cpu, pid, mem, time, mem_res, mem_vsize, uid, user");
#endif /* IOSTATS */
free(td->s);
free(obj->data.opaque);
return 0;
}
if (n < 1 || n > 10) {
NORM_ERR("invalid num arg for top. Must be between 1 and 10.");
free(td->s);
free(obj->data.opaque);
return 0;
} else {
td->num = n - 1;
}
} else {
NORM_ERR("invalid argument count for top");
free(td->s);
free(obj->data.opaque);
return 0;
}
return 1;
}
static char *format_time(unsigned long timeval, const int width)
{
char buf[10];
unsigned long nt; // narrow time, for speed on 32-bit
unsigned cc; // centiseconds
unsigned nn; // multi-purpose whatever
nt = timeval;
cc = nt % 100; // centiseconds past second
nt /= 100; // total seconds
nn = nt % 60; // seconds past the minute
nt /= 60; // total minutes
if (width >= snprintf(buf, sizeof buf, "%lu:%02u.%02u",
nt, nn, cc)) {
return strndup(buf, text_buffer_size);
}
if (width >= snprintf(buf, sizeof buf, "%lu:%02u", nt, nn)) {
return strndup(buf, text_buffer_size);
}
nn = nt % 60; // minutes past the hour
nt /= 60; // total hours
if (width >= snprintf(buf, sizeof buf, "%lu,%02u", nt, nn)) {
return strndup(buf, text_buffer_size);
}
nn = nt; // now also hours
if (width >= snprintf(buf, sizeof buf, "%uh", nn)) {
return strndup(buf, text_buffer_size);
}
nn /= 24; // now days
if (width >= snprintf(buf, sizeof buf, "%ud", nn)) {
return strndup(buf, text_buffer_size);
}
nn /= 7; // now weeks
if (width >= snprintf(buf, sizeof buf, "%uw", nn)) {
return strndup(buf, text_buffer_size);
}
// well shoot, this outta' fit...
return strndup("<inf>", text_buffer_size);
}
static unsigned int top_name_width = 15;
/* return zero on success, non-zero otherwise */
int set_top_name_width(const char *s)
{
if (!s)
return 0;
return !(sscanf(s, "%u", &top_name_width) == 1);
}
void print_top(struct text_object *obj, char *p, int p_max_size)
{
struct information *cur = &info;
struct top_data *td = obj->data.opaque;
struct process **needed = 0;
int width;
if (!td)
return;
switch (obj->type) {
case OBJ_top:
needed = cur->cpu;
break;
case OBJ_top_mem:
needed = cur->memu;
break;
case OBJ_top_time:
needed = cur->time;
break;
#ifdef IOSTATS
case OBJ_top_io:
needed = cur->io;
break;
#endif /* IOSTATS */
default:
return;
}
if (needed[td->num]) {
char *timeval;
switch (td->type) {
case TOP_NAME:
if (needed[td->num]->name) {
width = MIN(p_max_size, (int)top_name_width + 1);
snprintf(p, width + 1, "%-*s", width,
needed[td->num]->name);
}
break;
case TOP_CPU:
width = MIN(p_max_size, 7);
snprintf(p, width, "%6.2f",
needed[td->num]->amount);
break;
case TOP_PID:
width = MIN(p_max_size, 6);
snprintf(p, width, "%5i",
needed[td->num]->pid);
break;
case TOP_MEM:
/* Calculate a percentage of residential mem from total mem available.
* Since rss is bytes and memmax kilobytes, dividing by 10 suffices here. */
width = MIN(p_max_size, 7);
snprintf(p, width, "%6.2f",
(float) ((float)needed[td->num]->rss / cur->memmax) / 10);
break;
case TOP_TIME:
width = MIN(p_max_size, 10);
timeval = format_time(
needed[td->num]->total_cpu_time, 9);
snprintf(p, width, "%9s", timeval);
free(timeval);
break;
case TOP_MEM_RES:
human_readable(needed[td->num]->rss,
p, p_max_size);
break;
case TOP_MEM_VSIZE:
human_readable(needed[td->num]->vsize,
p, p_max_size);
break;
case TOP_UID:
snprintf(p, p_max_size, "%5d", needed[td->num]->uid);
break;
case TOP_USER:
width = MIN(p_max_size, 9);
snprintf(p, width, "%.8s",
getpwuid(needed[td->num]->uid)->pw_name);
break;
#ifdef IOSTATS
case TOP_READ_BYTES:
human_readable(needed[td->num]->read_bytes / update_interval,
p, p_max_size);
break;
case TOP_WRITE_BYTES:
human_readable(needed[td->num]->write_bytes / update_interval,
p, p_max_size);
break;
case TOP_IO_PERC:
width = MIN(p_max_size, 7);
snprintf(p, width, "%6.2f",
needed[td->num]->io_perc);
break;
#endif
}
}
}
void free_top(struct text_object *obj, int internal)
{
struct top_data *td = obj->data.opaque;
if (info.first_process && !internal) {
free_all_processes();
info.first_process = NULL;
}
if (!td)
return;
if (td->s)
free(td->s);
free(obj->data.opaque);
obj->data.opaque = NULL;
}