Rather than the *entire* file name.
The current method is extremely inefficient, but having control characters in file names is also extremely uncommon; it’s something that should be fixed, only eventually.
exa deals with cells and widths a lot: the items in a grid need to be aligned according to their *contents’* widths, rather than the length of their strings, which often included ANSI escape characters. As an optimisation, it used to calculate this separately based on the filename, and dealing with any extra characters (such as the classify ones) in that function too.
Recently, though, file names have become a lot more complicated. Classification added zero to one extra characters, and now with escaped control characters in file names, it’s not so easy to calculate the display width of a filename.
This commit removes the function that calculated the width, in favour of building the output string (it’s going to be displayed anyway) and just getting the width of what it displays instead.
It's confusing, and `ls` doesn't do this either. We're not prepending
the current path to all of the directory entries, and the user is going
to interpret the symlink target as relative to the directory containing
the symlink.
It’s the only file where its path is the same as its file name, and has been the source of numerous bugs in the past… this special-case isn’t very clean, but it works.
This adds an option (always on at the moment) to use a colour scale of green to yellow to orange for the file size field instead of always green. See #65.
This makes the Colours value pick a colour based on the size of the file, instead of necessarily having them all green. (They are all green for now, though.)
See #97 and recently #130 too.
This allows the user to pass in options such as "--ignore '*.pyc'" to not list any files ending in '.pyc' in the output. It uses the Rust glob crate and currently does a simple split on pipe, without any escaping, so it’s not really *complete*, but is at least something.
Fixes#123. The code assumes that every File that has its link_target() method called would first have been checked to make sure it’s actually a link first. Unfortunately it also assumed that the only thing that can go wrong while following a link is if the file wasn’t a link, meaning it crashes when given a link it doesn’t have permission to follow.
This makes the file_target() method able to return either a file or path for displaying, as before, but also an IO error for when things go wrong.
This changes the way that views are used to display the actual lists of files. It used to pass empty vectors to the view methods, which most of the time would not print anything because there are no files to list — except when there’s a header row which gets printed for no files.
By not calling the view method at all when there’s nothing to print, exa won’t ever print extra things in the view unless it needs to for a file.
This fixes#106 “Don’t print the header if the result set is empty”
Now when you do `--sort time` instead of saying "unknown option --sort
time" it will say "unknown options '--sort time' (choices: name...)"
with all legal options.
This also adds the legal values to the default help text.
This commit removes the 'main' function present in main.rs, renames it to exa.rs, and puts the 'main' function in its own binary. This, I think, makes it more clear how the program works and where the main entry point is.
Librarification also means that we can start testing as a whole. Two tests have been added that test everything, passing in raw command-line arguments then comparing against the binary coloured text that gets produced.
Casualties include having to specifically mark some code blocks in documentation as 'tests', as rustdoc kept on trying to execute my ANSI art.
The original options was becoming a bit unwieldy, and would have been even more so if I added the same amount of comments. So this commit splits it up.
There's no extra hiding going on here, or rearranging things within the module: (almost) everything now has to be marked 'pub' to let other sub-modules in the new options module to see it.
The trait was only used internally to the options module, so it doesn't actually need to be exist or implemented on anything! We can just impl them directly on the types and have those methods be local to the module.