fzf/src/algo/algo.go

952 lines
25 KiB
Go

package algo
/*
Algorithm
---------
FuzzyMatchV1 finds the first "fuzzy" occurrence of the pattern within the given
text in O(n) time where n is the length of the text. Once the position of the
last character is located, it traverses backwards to see if there's a shorter
substring that matches the pattern.
a_____b___abc__ To find "abc"
*-----*-----*> 1. Forward scan
<*** 2. Backward scan
The algorithm is simple and fast, but as it only sees the first occurrence,
it is not guaranteed to find the occurrence with the highest score.
a_____b__c__abc
*-----*--* ***
FuzzyMatchV2 implements a modified version of Smith-Waterman algorithm to find
the optimal solution (highest score) according to the scoring criteria. Unlike
the original algorithm, omission or mismatch of a character in the pattern is
not allowed.
Performance
-----------
The new V2 algorithm is slower than V1 as it examines all occurrences of the
pattern instead of stopping immediately after finding the first one. The time
complexity of the algorithm is O(nm) if a match is found and O(n) otherwise
where n is the length of the item and m is the length of the pattern. Thus, the
performance overhead may not be noticeable for a query with high selectivity.
However, if the performance is more important than the quality of the result,
you can still choose v1 algorithm with --algo=v1.
Scoring criteria
----------------
- We prefer matches at special positions, such as the start of a word, or
uppercase character in camelCase words.
- That is, we prefer an occurrence of the pattern with more characters
matching at special positions, even if the total match length is longer.
e.g. "fuzzyfinder" vs. "fuzzy-finder" on "ff"
````````````
- Also, if the first character in the pattern appears at one of the special
positions, the bonus point for the position is multiplied by a constant
as it is extremely likely that the first character in the typed pattern
has more significance than the rest.
e.g. "fo-bar" vs. "foob-r" on "br"
``````
- But since fzf is still a fuzzy finder, not an acronym finder, we should also
consider the total length of the matched substring. This is why we have the
gap penalty. The gap penalty increases as the length of the gap (distance
between the matching characters) increases, so the effect of the bonus is
eventually cancelled at some point.
e.g. "fuzzyfinder" vs. "fuzzy-blurry-finder" on "ff"
```````````
- Consequently, it is crucial to find the right balance between the bonus
and the gap penalty. The parameters were chosen that the bonus is cancelled
when the gap size increases beyond 8 characters.
- The bonus mechanism can have the undesirable side effect where consecutive
matches are ranked lower than the ones with gaps.
e.g. "foobar" vs. "foo-bar" on "foob"
```````
- To correct this anomaly, we also give extra bonus point to each character
in a consecutive matching chunk.
e.g. "foobar" vs. "foo-bar" on "foob"
``````
- The amount of consecutive bonus is primarily determined by the bonus of the
first character in the chunk.
e.g. "foobar" vs. "out-of-bound" on "oob"
````````````
*/
import (
"bytes"
"fmt"
"os"
"strings"
"unicode"
"unicode/utf8"
"github.com/junegunn/fzf/src/util"
)
var DEBUG bool
var delimiterChars = "/,:;|"
const whiteChars = " \t\n\v\f\r\x85\xA0"
func indexAt(index int, max int, forward bool) int {
if forward {
return index
}
return max - index - 1
}
// Result contains the results of running a match function.
type Result struct {
// TODO int32 should suffice
Start int
End int
Score int
}
const (
scoreMatch = 16
scoreGapStart = -3
scoreGapExtension = -1
// We prefer matches at the beginning of a word, but the bonus should not be
// too great to prevent the longer acronym matches from always winning over
// shorter fuzzy matches. The bonus point here was specifically chosen that
// the bonus is cancelled when the gap between the acronyms grows over
// 8 characters, which is approximately the average length of the words found
// in web2 dictionary and my file system.
bonusBoundary = scoreMatch / 2
// Although bonus point for non-word characters is non-contextual, we need it
// for computing bonus points for consecutive chunks starting with a non-word
// character.
bonusNonWord = scoreMatch / 2
// Edge-triggered bonus for matches in camelCase words.
// Compared to word-boundary case, they don't accompany single-character gaps
// (e.g. FooBar vs. foo-bar), so we deduct bonus point accordingly.
bonusCamel123 = bonusBoundary + scoreGapExtension
// Minimum bonus point given to characters in consecutive chunks.
// Note that bonus points for consecutive matches shouldn't have needed if we
// used fixed match score as in the original algorithm.
bonusConsecutive = -(scoreGapStart + scoreGapExtension)
// The first character in the typed pattern usually has more significance
// than the rest so it's important that it appears at special positions where
// bonus points are given, e.g. "to-go" vs. "ongoing" on "og" or on "ogo".
// The amount of the extra bonus should be limited so that the gap penalty is
// still respected.
bonusFirstCharMultiplier = 2
)
var (
// Extra bonus for word boundary after whitespace character or beginning of the string
bonusBoundaryWhite int16 = bonusBoundary + 2
// Extra bonus for word boundary after slash, colon, semi-colon, and comma
bonusBoundaryDelimiter int16 = bonusBoundary + 1
initialCharClass charClass = charWhite
)
type charClass int
const (
charWhite charClass = iota
charNonWord
charDelimiter
charLower
charUpper
charLetter
charNumber
)
func Init(scheme string) bool {
switch scheme {
case "default":
bonusBoundaryWhite = bonusBoundary + 2
bonusBoundaryDelimiter = bonusBoundary + 1
case "path":
bonusBoundaryWhite = bonusBoundary
bonusBoundaryDelimiter = bonusBoundary + 1
if os.PathSeparator == '/' {
delimiterChars = "/"
} else {
delimiterChars = string([]rune{os.PathSeparator, '/'})
}
initialCharClass = charDelimiter
case "history":
bonusBoundaryWhite = bonusBoundary
bonusBoundaryDelimiter = bonusBoundary
default:
return false
}
return true
}
func posArray(withPos bool, len int) *[]int {
if withPos {
pos := make([]int, 0, len)
return &pos
}
return nil
}
func alloc16(offset int, slab *util.Slab, size int) (int, []int16) {
if slab != nil && cap(slab.I16) > offset+size {
slice := slab.I16[offset : offset+size]
return offset + size, slice
}
return offset, make([]int16, size)
}
func alloc32(offset int, slab *util.Slab, size int) (int, []int32) {
if slab != nil && cap(slab.I32) > offset+size {
slice := slab.I32[offset : offset+size]
return offset + size, slice
}
return offset, make([]int32, size)
}
func charClassOfAscii(char rune) charClass {
if char >= 'a' && char <= 'z' {
return charLower
} else if char >= 'A' && char <= 'Z' {
return charUpper
} else if char >= '0' && char <= '9' {
return charNumber
} else if strings.ContainsRune(whiteChars, char) {
return charWhite
} else if strings.ContainsRune(delimiterChars, char) {
return charDelimiter
}
return charNonWord
}
func charClassOfNonAscii(char rune) charClass {
if unicode.IsLower(char) {
return charLower
} else if unicode.IsUpper(char) {
return charUpper
} else if unicode.IsNumber(char) {
return charNumber
} else if unicode.IsLetter(char) {
return charLetter
} else if unicode.IsSpace(char) {
return charWhite
} else if strings.ContainsRune(delimiterChars, char) {
return charDelimiter
}
return charNonWord
}
func charClassOf(char rune) charClass {
if char <= unicode.MaxASCII {
return charClassOfAscii(char)
}
return charClassOfNonAscii(char)
}
func bonusFor(prevClass charClass, class charClass) int16 {
if class > charNonWord {
switch prevClass {
case charWhite:
// Word boundary after whitespace
return bonusBoundaryWhite
case charDelimiter:
// Word boundary after a delimiter character
return bonusBoundaryDelimiter
case charNonWord:
// Word boundary
return bonusBoundary
}
}
if prevClass == charLower && class == charUpper ||
prevClass != charNumber && class == charNumber {
// camelCase letter123
return bonusCamel123
}
switch class {
case charNonWord, charDelimiter:
return bonusNonWord
case charWhite:
return bonusBoundaryWhite
}
return 0
}
func bonusAt(input *util.Chars, idx int) int16 {
if idx == 0 {
return bonusBoundaryWhite
}
return bonusFor(charClassOf(input.Get(idx-1)), charClassOf(input.Get(idx)))
}
func normalizeRune(r rune) rune {
if r < 0x00C0 || r > 0x2184 {
return r
}
n := normalized[r]
if n > 0 {
return n
}
return r
}
// Algo functions make two assumptions
// 1. "pattern" is given in lowercase if "caseSensitive" is false
// 2. "pattern" is already normalized if "normalize" is true
type Algo func(caseSensitive bool, normalize bool, forward bool, input *util.Chars, pattern []rune, withPos bool, slab *util.Slab) (Result, *[]int)
func trySkip(input *util.Chars, caseSensitive bool, b byte, from int) int {
byteArray := input.Bytes()[from:]
idx := bytes.IndexByte(byteArray, b)
if idx == 0 {
// Can't skip any further
return from
}
// We may need to search for the uppercase letter again. We don't have to
// consider normalization as we can be sure that this is an ASCII string.
if !caseSensitive && b >= 'a' && b <= 'z' {
if idx > 0 {
byteArray = byteArray[:idx]
}
uidx := bytes.IndexByte(byteArray, b-32)
if uidx >= 0 {
idx = uidx
}
}
if idx < 0 {
return -1
}
return from + idx
}
func isAscii(runes []rune) bool {
for _, r := range runes {
if r >= utf8.RuneSelf {
return false
}
}
return true
}
func asciiFuzzyIndex(input *util.Chars, pattern []rune, caseSensitive bool) int {
// Can't determine
if !input.IsBytes() {
return 0
}
// Not possible
if !isAscii(pattern) {
return -1
}
firstIdx, idx := 0, 0
for pidx := 0; pidx < len(pattern); pidx++ {
idx = trySkip(input, caseSensitive, byte(pattern[pidx]), idx)
if idx < 0 {
return -1
}
if pidx == 0 && idx > 0 {
// Step back to find the right bonus point
firstIdx = idx - 1
}
idx++
}
return firstIdx
}
func debugV2(T []rune, pattern []rune, F []int32, lastIdx int, H []int16, C []int16) {
width := lastIdx - int(F[0]) + 1
for i, f := range F {
I := i * width
if i == 0 {
fmt.Print(" ")
for j := int(f); j <= lastIdx; j++ {
fmt.Printf(" " + string(T[j]) + " ")
}
fmt.Println()
}
fmt.Print(string(pattern[i]) + " ")
for idx := int(F[0]); idx < int(f); idx++ {
fmt.Print(" 0 ")
}
for idx := int(f); idx <= lastIdx; idx++ {
fmt.Printf("%2d ", H[i*width+idx-int(F[0])])
}
fmt.Println()
fmt.Print(" ")
for idx, p := range C[I : I+width] {
if idx+int(F[0]) < int(F[i]) {
p = 0
}
if p > 0 {
fmt.Printf("%2d ", p)
} else {
fmt.Print(" ")
}
}
fmt.Println()
}
}
func FuzzyMatchV2(caseSensitive bool, normalize bool, forward bool, input *util.Chars, pattern []rune, withPos bool, slab *util.Slab) (Result, *[]int) {
// Assume that pattern is given in lowercase if case-insensitive.
// First check if there's a match and calculate bonus for each position.
// If the input string is too long, consider finding the matching chars in
// this phase as well (non-optimal alignment).
M := len(pattern)
if M == 0 {
return Result{0, 0, 0}, posArray(withPos, M)
}
N := input.Length()
// Since O(nm) algorithm can be prohibitively expensive for large input,
// we fall back to the greedy algorithm.
if slab != nil && N*M > cap(slab.I16) {
return FuzzyMatchV1(caseSensitive, normalize, forward, input, pattern, withPos, slab)
}
// Phase 1. Optimized search for ASCII string
idx := asciiFuzzyIndex(input, pattern, caseSensitive)
if idx < 0 {
return Result{-1, -1, 0}, nil
}
// Reuse pre-allocated integer slice to avoid unnecessary sweeping of garbages
offset16 := 0
offset32 := 0
offset16, H0 := alloc16(offset16, slab, N)
offset16, C0 := alloc16(offset16, slab, N)
// Bonus point for each position
offset16, B := alloc16(offset16, slab, N)
// The first occurrence of each character in the pattern
offset32, F := alloc32(offset32, slab, M)
// Rune array
_, T := alloc32(offset32, slab, N)
input.CopyRunes(T)
// Phase 2. Calculate bonus for each point
maxScore, maxScorePos := int16(0), 0
pidx, lastIdx := 0, 0
pchar0, pchar, prevH0, prevClass, inGap := pattern[0], pattern[0], int16(0), initialCharClass, false
Tsub := T[idx:]
H0sub, C0sub, Bsub := H0[idx:][:len(Tsub)], C0[idx:][:len(Tsub)], B[idx:][:len(Tsub)]
for off, char := range Tsub {
var class charClass
if char <= unicode.MaxASCII {
class = charClassOfAscii(char)
if !caseSensitive && class == charUpper {
char += 32
}
} else {
class = charClassOfNonAscii(char)
if !caseSensitive && class == charUpper {
char = unicode.To(unicode.LowerCase, char)
}
if normalize {
char = normalizeRune(char)
}
}
Tsub[off] = char
bonus := bonusFor(prevClass, class)
Bsub[off] = bonus
prevClass = class
if char == pchar {
if pidx < M {
F[pidx] = int32(idx + off)
pidx++
pchar = pattern[util.Min(pidx, M-1)]
}
lastIdx = idx + off
}
if char == pchar0 {
score := scoreMatch + bonus*bonusFirstCharMultiplier
H0sub[off] = score
C0sub[off] = 1
if M == 1 && (forward && score > maxScore || !forward && score >= maxScore) {
maxScore, maxScorePos = score, idx+off
if forward && bonus >= bonusBoundary {
break
}
}
inGap = false
} else {
if inGap {
H0sub[off] = util.Max16(prevH0+scoreGapExtension, 0)
} else {
H0sub[off] = util.Max16(prevH0+scoreGapStart, 0)
}
C0sub[off] = 0
inGap = true
}
prevH0 = H0sub[off]
}
if pidx != M {
return Result{-1, -1, 0}, nil
}
if M == 1 {
result := Result{maxScorePos, maxScorePos + 1, int(maxScore)}
if !withPos {
return result, nil
}
pos := []int{maxScorePos}
return result, &pos
}
// Phase 3. Fill in score matrix (H)
// Unlike the original algorithm, we do not allow omission.
f0 := int(F[0])
width := lastIdx - f0 + 1
offset16, H := alloc16(offset16, slab, width*M)
copy(H, H0[f0:lastIdx+1])
// Possible length of consecutive chunk at each position.
_, C := alloc16(offset16, slab, width*M)
copy(C, C0[f0:lastIdx+1])
Fsub := F[1:]
Psub := pattern[1:][:len(Fsub)]
for off, f := range Fsub {
f := int(f)
pchar := Psub[off]
pidx := off + 1
row := pidx * width
inGap := false
Tsub := T[f : lastIdx+1]
Bsub := B[f:][:len(Tsub)]
Csub := C[row+f-f0:][:len(Tsub)]
Cdiag := C[row+f-f0-1-width:][:len(Tsub)]
Hsub := H[row+f-f0:][:len(Tsub)]
Hdiag := H[row+f-f0-1-width:][:len(Tsub)]
Hleft := H[row+f-f0-1:][:len(Tsub)]
Hleft[0] = 0
for off, char := range Tsub {
col := off + f
var s1, s2, consecutive int16
if inGap {
s2 = Hleft[off] + scoreGapExtension
} else {
s2 = Hleft[off] + scoreGapStart
}
if pchar == char {
s1 = Hdiag[off] + scoreMatch
b := Bsub[off]
consecutive = Cdiag[off] + 1
if consecutive > 1 {
fb := B[col-int(consecutive)+1]
// Break consecutive chunk
if b >= bonusBoundary && b > fb {
consecutive = 1
} else {
b = util.Max16(b, util.Max16(bonusConsecutive, fb))
}
}
if s1+b < s2 {
s1 += Bsub[off]
consecutive = 0
} else {
s1 += b
}
}
Csub[off] = consecutive
inGap = s1 < s2
score := util.Max16(util.Max16(s1, s2), 0)
if pidx == M-1 && (forward && score > maxScore || !forward && score >= maxScore) {
maxScore, maxScorePos = score, col
}
Hsub[off] = score
}
}
if DEBUG {
debugV2(T, pattern, F, lastIdx, H, C)
}
// Phase 4. (Optional) Backtrace to find character positions
pos := posArray(withPos, M)
j := f0
if withPos {
i := M - 1
j = maxScorePos
preferMatch := true
for {
I := i * width
j0 := j - f0
s := H[I+j0]
var s1, s2 int16
if i > 0 && j >= int(F[i]) {
s1 = H[I-width+j0-1]
}
if j > int(F[i]) {
s2 = H[I+j0-1]
}
if s > s1 && (s > s2 || s == s2 && preferMatch) {
*pos = append(*pos, j)
if i == 0 {
break
}
i--
}
preferMatch = C[I+j0] > 1 || I+width+j0+1 < len(C) && C[I+width+j0+1] > 0
j--
}
}
// Start offset we return here is only relevant when begin tiebreak is used.
// However finding the accurate offset requires backtracking, and we don't
// want to pay extra cost for the option that has lost its importance.
return Result{j, maxScorePos + 1, int(maxScore)}, pos
}
// Implement the same sorting criteria as V2
func calculateScore(caseSensitive bool, normalize bool, text *util.Chars, pattern []rune, sidx int, eidx int, withPos bool) (int, *[]int) {
pidx, score, inGap, consecutive, firstBonus := 0, 0, false, 0, int16(0)
pos := posArray(withPos, len(pattern))
prevClass := initialCharClass
if sidx > 0 {
prevClass = charClassOf(text.Get(sidx - 1))
}
for idx := sidx; idx < eidx; idx++ {
char := text.Get(idx)
class := charClassOf(char)
if !caseSensitive {
if char >= 'A' && char <= 'Z' {
char += 32
} else if char > unicode.MaxASCII {
char = unicode.To(unicode.LowerCase, char)
}
}
// pattern is already normalized
if normalize {
char = normalizeRune(char)
}
if char == pattern[pidx] {
if withPos {
*pos = append(*pos, idx)
}
score += scoreMatch
bonus := bonusFor(prevClass, class)
if consecutive == 0 {
firstBonus = bonus
} else {
// Break consecutive chunk
if bonus >= bonusBoundary && bonus > firstBonus {
firstBonus = bonus
}
bonus = util.Max16(util.Max16(bonus, firstBonus), bonusConsecutive)
}
if pidx == 0 {
score += int(bonus * bonusFirstCharMultiplier)
} else {
score += int(bonus)
}
inGap = false
consecutive++
pidx++
} else {
if inGap {
score += scoreGapExtension
} else {
score += scoreGapStart
}
inGap = true
consecutive = 0
firstBonus = 0
}
prevClass = class
}
return score, pos
}
// FuzzyMatchV1 performs fuzzy-match
func FuzzyMatchV1(caseSensitive bool, normalize bool, forward bool, text *util.Chars, pattern []rune, withPos bool, slab *util.Slab) (Result, *[]int) {
if len(pattern) == 0 {
return Result{0, 0, 0}, nil
}
if asciiFuzzyIndex(text, pattern, caseSensitive) < 0 {
return Result{-1, -1, 0}, nil
}
pidx := 0
sidx := -1
eidx := -1
lenRunes := text.Length()
lenPattern := len(pattern)
for index := 0; index < lenRunes; index++ {
char := text.Get(indexAt(index, lenRunes, forward))
// This is considerably faster than blindly applying strings.ToLower to the
// whole string
if !caseSensitive {
// Partially inlining `unicode.ToLower`. Ugly, but makes a noticeable
// difference in CPU cost. (Measured on Go 1.4.1. Also note that the Go
// compiler as of now does not inline non-leaf functions.)
if char >= 'A' && char <= 'Z' {
char += 32
} else if char > unicode.MaxASCII {
char = unicode.To(unicode.LowerCase, char)
}
}
if normalize {
char = normalizeRune(char)
}
pchar := pattern[indexAt(pidx, lenPattern, forward)]
if char == pchar {
if sidx < 0 {
sidx = index
}
if pidx++; pidx == lenPattern {
eidx = index + 1
break
}
}
}
if sidx >= 0 && eidx >= 0 {
pidx--
for index := eidx - 1; index >= sidx; index-- {
tidx := indexAt(index, lenRunes, forward)
char := text.Get(tidx)
if !caseSensitive {
if char >= 'A' && char <= 'Z' {
char += 32
} else if char > unicode.MaxASCII {
char = unicode.To(unicode.LowerCase, char)
}
}
pidx_ := indexAt(pidx, lenPattern, forward)
pchar := pattern[pidx_]
if char == pchar {
if pidx--; pidx < 0 {
sidx = index
break
}
}
}
if !forward {
sidx, eidx = lenRunes-eidx, lenRunes-sidx
}
score, pos := calculateScore(caseSensitive, normalize, text, pattern, sidx, eidx, withPos)
return Result{sidx, eidx, score}, pos
}
return Result{-1, -1, 0}, nil
}
// ExactMatchNaive is a basic string searching algorithm that handles case
// sensitivity. Although naive, it still performs better than the combination
// of strings.ToLower + strings.Index for typical fzf use cases where input
// strings and patterns are not very long.
//
// Since 0.15.0, this function searches for the match with the highest
// bonus point, instead of stopping immediately after finding the first match.
// The solution is much cheaper since there is only one possible alignment of
// the pattern.
func ExactMatchNaive(caseSensitive bool, normalize bool, forward bool, text *util.Chars, pattern []rune, withPos bool, slab *util.Slab) (Result, *[]int) {
if len(pattern) == 0 {
return Result{0, 0, 0}, nil
}
lenRunes := text.Length()
lenPattern := len(pattern)
if lenRunes < lenPattern {
return Result{-1, -1, 0}, nil
}
if asciiFuzzyIndex(text, pattern, caseSensitive) < 0 {
return Result{-1, -1, 0}, nil
}
// For simplicity, only look at the bonus at the first character position
pidx := 0
bestPos, bonus, bestBonus := -1, int16(0), int16(-1)
for index := 0; index < lenRunes; index++ {
index_ := indexAt(index, lenRunes, forward)
char := text.Get(index_)
if !caseSensitive {
if char >= 'A' && char <= 'Z' {
char += 32
} else if char > unicode.MaxASCII {
char = unicode.To(unicode.LowerCase, char)
}
}
if normalize {
char = normalizeRune(char)
}
pidx_ := indexAt(pidx, lenPattern, forward)
pchar := pattern[pidx_]
if pchar == char {
if pidx_ == 0 {
bonus = bonusAt(text, index_)
}
pidx++
if pidx == lenPattern {
if bonus > bestBonus {
bestPos, bestBonus = index, bonus
}
if bonus >= bonusBoundary {
break
}
index -= pidx - 1
pidx, bonus = 0, 0
}
} else {
index -= pidx
pidx, bonus = 0, 0
}
}
if bestPos >= 0 {
var sidx, eidx int
if forward {
sidx = bestPos - lenPattern + 1
eidx = bestPos + 1
} else {
sidx = lenRunes - (bestPos + 1)
eidx = lenRunes - (bestPos - lenPattern + 1)
}
score, _ := calculateScore(caseSensitive, normalize, text, pattern, sidx, eidx, false)
return Result{sidx, eidx, score}, nil
}
return Result{-1, -1, 0}, nil
}
// PrefixMatch performs prefix-match
func PrefixMatch(caseSensitive bool, normalize bool, forward bool, text *util.Chars, pattern []rune, withPos bool, slab *util.Slab) (Result, *[]int) {
if len(pattern) == 0 {
return Result{0, 0, 0}, nil
}
trimmedLen := 0
if !unicode.IsSpace(pattern[0]) {
trimmedLen = text.LeadingWhitespaces()
}
if text.Length()-trimmedLen < len(pattern) {
return Result{-1, -1, 0}, nil
}
for index, r := range pattern {
char := text.Get(trimmedLen + index)
if !caseSensitive {
char = unicode.ToLower(char)
}
if normalize {
char = normalizeRune(char)
}
if char != r {
return Result{-1, -1, 0}, nil
}
}
lenPattern := len(pattern)
score, _ := calculateScore(caseSensitive, normalize, text, pattern, trimmedLen, trimmedLen+lenPattern, false)
return Result{trimmedLen, trimmedLen + lenPattern, score}, nil
}
// SuffixMatch performs suffix-match
func SuffixMatch(caseSensitive bool, normalize bool, forward bool, text *util.Chars, pattern []rune, withPos bool, slab *util.Slab) (Result, *[]int) {
lenRunes := text.Length()
trimmedLen := lenRunes
if len(pattern) == 0 || !unicode.IsSpace(pattern[len(pattern)-1]) {
trimmedLen -= text.TrailingWhitespaces()
}
if len(pattern) == 0 {
return Result{trimmedLen, trimmedLen, 0}, nil
}
diff := trimmedLen - len(pattern)
if diff < 0 {
return Result{-1, -1, 0}, nil
}
for index, r := range pattern {
char := text.Get(index + diff)
if !caseSensitive {
char = unicode.ToLower(char)
}
if normalize {
char = normalizeRune(char)
}
if char != r {
return Result{-1, -1, 0}, nil
}
}
lenPattern := len(pattern)
sidx := trimmedLen - lenPattern
eidx := trimmedLen
score, _ := calculateScore(caseSensitive, normalize, text, pattern, sidx, eidx, false)
return Result{sidx, eidx, score}, nil
}
// EqualMatch performs equal-match
func EqualMatch(caseSensitive bool, normalize bool, forward bool, text *util.Chars, pattern []rune, withPos bool, slab *util.Slab) (Result, *[]int) {
lenPattern := len(pattern)
if lenPattern == 0 {
return Result{-1, -1, 0}, nil
}
// Strip leading whitespaces
trimmedLen := 0
if !unicode.IsSpace(pattern[0]) {
trimmedLen = text.LeadingWhitespaces()
}
// Strip trailing whitespaces
trimmedEndLen := 0
if !unicode.IsSpace(pattern[lenPattern-1]) {
trimmedEndLen = text.TrailingWhitespaces()
}
if text.Length()-trimmedLen-trimmedEndLen != lenPattern {
return Result{-1, -1, 0}, nil
}
match := true
if normalize {
runes := text.ToRunes()
for idx, pchar := range pattern {
char := runes[trimmedLen+idx]
if !caseSensitive {
char = unicode.To(unicode.LowerCase, char)
}
if normalizeRune(pchar) != normalizeRune(char) {
match = false
break
}
}
} else {
runes := text.ToRunes()
runesStr := string(runes[trimmedLen : len(runes)-trimmedEndLen])
if !caseSensitive {
runesStr = strings.ToLower(runesStr)
}
match = runesStr == string(pattern)
}
if match {
return Result{trimmedLen, trimmedLen + lenPattern, (scoreMatch+int(bonusBoundaryWhite))*lenPattern +
(bonusFirstCharMultiplier-1)*int(bonusBoundaryWhite)}, nil
}
return Result{-1, -1, 0}, nil
}