<?php /** * PHPExcel * * Copyright (c) 2006 - 2014 PHPExcel * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * @category PHPExcel * @package PHPExcel_Shared_Trend * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) * @license http://www.gnu.org/licenses/old-licenses/lgpl-2.1.txt LGPL * @version ##VERSION##, ##DATE## */ /** * PHPExcel_Best_Fit * * @category PHPExcel * @package PHPExcel_Shared_Trend * @copyright Copyright (c) 2006 - 2014 PHPExcel (http://www.codeplex.com/PHPExcel) */ class PHPExcel_Best_Fit { /** * Indicator flag for a calculation error * * @var boolean **/ protected $_error = False; /** * Algorithm type to use for best-fit * * @var string **/ protected $_bestFitType = 'undetermined'; /** * Number of entries in the sets of x- and y-value arrays * * @var int **/ protected $_valueCount = 0; /** * X-value dataseries of values * * @var float[] **/ protected $_xValues = array(); /** * Y-value dataseries of values * * @var float[] **/ protected $_yValues = array(); /** * Flag indicating whether values should be adjusted to Y=0 * * @var boolean **/ protected $_adjustToZero = False; /** * Y-value series of best-fit values * * @var float[] **/ protected $_yBestFitValues = array(); protected $_goodnessOfFit = 1; protected $_stdevOfResiduals = 0; protected $_covariance = 0; protected $_correlation = 0; protected $_SSRegression = 0; protected $_SSResiduals = 0; protected $_DFResiduals = 0; protected $_F = 0; protected $_slope = 0; protected $_slopeSE = 0; protected $_intersect = 0; protected $_intersectSE = 0; protected $_Xoffset = 0; protected $_Yoffset = 0; public function getError() { return $this->_error; } // function getBestFitType() public function getBestFitType() { return $this->_bestFitType; } // function getBestFitType() /** * Return the Y-Value for a specified value of X * * @param float $xValue X-Value * @return float Y-Value */ public function getValueOfYForX($xValue) { return False; } // function getValueOfYForX() /** * Return the X-Value for a specified value of Y * * @param float $yValue Y-Value * @return float X-Value */ public function getValueOfXForY($yValue) { return False; } // function getValueOfXForY() /** * Return the original set of X-Values * * @return float[] X-Values */ public function getXValues() { return $this->_xValues; } // function getValueOfXForY() /** * Return the Equation of the best-fit line * * @param int $dp Number of places of decimal precision to display * @return string */ public function getEquation($dp=0) { return False; } // function getEquation() /** * Return the Slope of the line * * @param int $dp Number of places of decimal precision to display * @return string */ public function getSlope($dp=0) { if ($dp != 0) { return round($this->_slope,$dp); } return $this->_slope; } // function getSlope() /** * Return the standard error of the Slope * * @param int $dp Number of places of decimal precision to display * @return string */ public function getSlopeSE($dp=0) { if ($dp != 0) { return round($this->_slopeSE,$dp); } return $this->_slopeSE; } // function getSlopeSE() /** * Return the Value of X where it intersects Y = 0 * * @param int $dp Number of places of decimal precision to display * @return string */ public function getIntersect($dp=0) { if ($dp != 0) { return round($this->_intersect,$dp); } return $this->_intersect; } // function getIntersect() /** * Return the standard error of the Intersect * * @param int $dp Number of places of decimal precision to display * @return string */ public function getIntersectSE($dp=0) { if ($dp != 0) { return round($this->_intersectSE,$dp); } return $this->_intersectSE; } // function getIntersectSE() /** * Return the goodness of fit for this regression * * @param int $dp Number of places of decimal precision to return * @return float */ public function getGoodnessOfFit($dp=0) { if ($dp != 0) { return round($this->_goodnessOfFit,$dp); } return $this->_goodnessOfFit; } // function getGoodnessOfFit() public function getGoodnessOfFitPercent($dp=0) { if ($dp != 0) { return round($this->_goodnessOfFit * 100,$dp); } return $this->_goodnessOfFit * 100; } // function getGoodnessOfFitPercent() /** * Return the standard deviation of the residuals for this regression * * @param int $dp Number of places of decimal precision to return * @return float */ public function getStdevOfResiduals($dp=0) { if ($dp != 0) { return round($this->_stdevOfResiduals,$dp); } return $this->_stdevOfResiduals; } // function getStdevOfResiduals() public function getSSRegression($dp=0) { if ($dp != 0) { return round($this->_SSRegression,$dp); } return $this->_SSRegression; } // function getSSRegression() public function getSSResiduals($dp=0) { if ($dp != 0) { return round($this->_SSResiduals,$dp); } return $this->_SSResiduals; } // function getSSResiduals() public function getDFResiduals($dp=0) { if ($dp != 0) { return round($this->_DFResiduals,$dp); } return $this->_DFResiduals; } // function getDFResiduals() public function getF($dp=0) { if ($dp != 0) { return round($this->_F,$dp); } return $this->_F; } // function getF() public function getCovariance($dp=0) { if ($dp != 0) { return round($this->_covariance,$dp); } return $this->_covariance; } // function getCovariance() public function getCorrelation($dp=0) { if ($dp != 0) { return round($this->_correlation,$dp); } return $this->_correlation; } // function getCorrelation() public function getYBestFitValues() { return $this->_yBestFitValues; } // function getYBestFitValues() protected function _calculateGoodnessOfFit($sumX,$sumY,$sumX2,$sumY2,$sumXY,$meanX,$meanY, $const) { $SSres = $SScov = $SScor = $SStot = $SSsex = 0.0; foreach($this->_xValues as $xKey => $xValue) { $bestFitY = $this->_yBestFitValues[$xKey] = $this->getValueOfYForX($xValue); $SSres += ($this->_yValues[$xKey] - $bestFitY) * ($this->_yValues[$xKey] - $bestFitY); if ($const) { $SStot += ($this->_yValues[$xKey] - $meanY) * ($this->_yValues[$xKey] - $meanY); } else { $SStot += $this->_yValues[$xKey] * $this->_yValues[$xKey]; } $SScov += ($this->_xValues[$xKey] - $meanX) * ($this->_yValues[$xKey] - $meanY); if ($const) { $SSsex += ($this->_xValues[$xKey] - $meanX) * ($this->_xValues[$xKey] - $meanX); } else { $SSsex += $this->_xValues[$xKey] * $this->_xValues[$xKey]; } } $this->_SSResiduals = $SSres; $this->_DFResiduals = $this->_valueCount - 1 - $const; if ($this->_DFResiduals == 0.0) { $this->_stdevOfResiduals = 0.0; } else { $this->_stdevOfResiduals = sqrt($SSres / $this->_DFResiduals); } if (($SStot == 0.0) || ($SSres == $SStot)) { $this->_goodnessOfFit = 1; } else { $this->_goodnessOfFit = 1 - ($SSres / $SStot); } $this->_SSRegression = $this->_goodnessOfFit * $SStot; $this->_covariance = $SScov / $this->_valueCount; $this->_correlation = ($this->_valueCount * $sumXY - $sumX * $sumY) / sqrt(($this->_valueCount * $sumX2 - pow($sumX,2)) * ($this->_valueCount * $sumY2 - pow($sumY,2))); $this->_slopeSE = $this->_stdevOfResiduals / sqrt($SSsex); $this->_intersectSE = $this->_stdevOfResiduals * sqrt(1 / ($this->_valueCount - ($sumX * $sumX) / $sumX2)); if ($this->_SSResiduals != 0.0) { if ($this->_DFResiduals == 0.0) { $this->_F = 0.0; } else { $this->_F = $this->_SSRegression / ($this->_SSResiduals / $this->_DFResiduals); } } else { if ($this->_DFResiduals == 0.0) { $this->_F = 0.0; } else { $this->_F = $this->_SSRegression / $this->_DFResiduals; } } } // function _calculateGoodnessOfFit() protected function _leastSquareFit($yValues, $xValues, $const) { // calculate sums $x_sum = array_sum($xValues); $y_sum = array_sum($yValues); $meanX = $x_sum / $this->_valueCount; $meanY = $y_sum / $this->_valueCount; $mBase = $mDivisor = $xx_sum = $xy_sum = $yy_sum = 0.0; for($i = 0; $i < $this->_valueCount; ++$i) { $xy_sum += $xValues[$i] * $yValues[$i]; $xx_sum += $xValues[$i] * $xValues[$i]; $yy_sum += $yValues[$i] * $yValues[$i]; if ($const) { $mBase += ($xValues[$i] - $meanX) * ($yValues[$i] - $meanY); $mDivisor += ($xValues[$i] - $meanX) * ($xValues[$i] - $meanX); } else { $mBase += $xValues[$i] * $yValues[$i]; $mDivisor += $xValues[$i] * $xValues[$i]; } } // calculate slope // $this->_slope = (($this->_valueCount * $xy_sum) - ($x_sum * $y_sum)) / (($this->_valueCount * $xx_sum) - ($x_sum * $x_sum)); $this->_slope = $mBase / $mDivisor; // calculate intersect // $this->_intersect = ($y_sum - ($this->_slope * $x_sum)) / $this->_valueCount; if ($const) { $this->_intersect = $meanY - ($this->_slope * $meanX); } else { $this->_intersect = 0; } $this->_calculateGoodnessOfFit($x_sum,$y_sum,$xx_sum,$yy_sum,$xy_sum,$meanX,$meanY,$const); } // function _leastSquareFit() /** * Define the regression * * @param float[] $yValues The set of Y-values for this regression * @param float[] $xValues The set of X-values for this regression * @param boolean $const */ function __construct($yValues, $xValues=array(), $const=True) { // Calculate number of points $nY = count($yValues); $nX = count($xValues); // Define X Values if necessary if ($nX == 0) { $xValues = range(1,$nY); $nX = $nY; } elseif ($nY != $nX) { // Ensure both arrays of points are the same size $this->_error = True; return False; } $this->_valueCount = $nY; $this->_xValues = $xValues; $this->_yValues = $yValues; } // function __construct() } // class bestFit