mirror of
https://github.com/namibia/free-programming-books.git
synced 2024-12-25 16:11:06 +00:00
Added books to Datamining and Machine Learning sections
This commit is contained in:
parent
8f4b5b77fb
commit
ee826d425d
@ -278,6 +278,7 @@
|
|||||||
* [Internet Advertising: An Interplay among Advertisers, Online Publishers, Ad Exchanges and Web Users](http://arxiv.org/pdf/1206.1754v2.pdf) (PDF)
|
* [Internet Advertising: An Interplay among Advertisers, Online Publishers, Ad Exchanges and Web Users](http://arxiv.org/pdf/1206.1754v2.pdf) (PDF)
|
||||||
* [Data Mining Algorithms In R](http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R)
|
* [Data Mining Algorithms In R](http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R)
|
||||||
* [Introduction to Data Science](http://jsresearch.net/wiki/projects/teachdatascience/Teach_Data_Science.html)
|
* [Introduction to Data Science](http://jsresearch.net/wiki/projects/teachdatascience/Teach_Data_Science.html)
|
||||||
|
* [School of Data Handbook](http://schoolofdata.org/handbook/)
|
||||||
|
|
||||||
####Machine Learning
|
####Machine Learning
|
||||||
* [Programming Computer Vision with Python](http://programmingcomputervision.com/)
|
* [Programming Computer Vision with Python](http://programmingcomputervision.com/)
|
||||||
@ -290,6 +291,8 @@
|
|||||||
* [Artificial Intelligence | Machine Learning](http://see.stanford.edu/see/materials/aimlcs229/handouts.aspx) - Andrew Ng *(Notes, lectures, and problems)*
|
* [Artificial Intelligence | Machine Learning](http://see.stanford.edu/see/materials/aimlcs229/handouts.aspx) - Andrew Ng *(Notes, lectures, and problems)*
|
||||||
* [Probabilistic Models in the Study of Language](http://idiom.ucsd.edu/~rlevy/pmsl_textbook/text.html) (Draft, with R code)
|
* [Probabilistic Models in the Study of Language](http://idiom.ucsd.edu/~rlevy/pmsl_textbook/text.html) (Draft, with R code)
|
||||||
* [Reinforcement Learning: An Introduction](http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html)
|
* [Reinforcement Learning: An Introduction](http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html)
|
||||||
|
* [A First Encounter with Machine Learning](https://www.ics.uci.edu/~welling/teaching/ICS273Afall11/IntroMLBook.pdf) (PDF)
|
||||||
|
* [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf) (PDF)
|
||||||
|
|
||||||
####Mathematics
|
####Mathematics
|
||||||
* [Think Bayes: Bayesian Statistics Made Simple](http://www.greenteapress.com/thinkbayes/) - Allen B. Downey
|
* [Think Bayes: Bayesian Statistics Made Simple](http://www.greenteapress.com/thinkbayes/) - Allen B. Downey
|
||||||
|
Loading…
Reference in New Issue
Block a user