1
0
mirror of https://github.com/namibia/free-programming-books.git synced 2024-12-25 00:00:21 +00:00

Added books to Datamining and Machine Learning sections

This commit is contained in:
Thomas Yarnall 2013-10-30 22:53:27 -05:00
parent 8f4b5b77fb
commit ee826d425d

View File

@ -278,6 +278,7 @@
* [Internet Advertising: An Interplay among Advertisers, Online Publishers, Ad Exchanges and Web Users](http://arxiv.org/pdf/1206.1754v2.pdf) (PDF) * [Internet Advertising: An Interplay among Advertisers, Online Publishers, Ad Exchanges and Web Users](http://arxiv.org/pdf/1206.1754v2.pdf) (PDF)
* [Data Mining Algorithms In R](http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R) * [Data Mining Algorithms In R](http://en.wikibooks.org/wiki/Data_Mining_Algorithms_In_R)
* [Introduction to Data Science](http://jsresearch.net/wiki/projects/teachdatascience/Teach_Data_Science.html) * [Introduction to Data Science](http://jsresearch.net/wiki/projects/teachdatascience/Teach_Data_Science.html)
* [School of Data Handbook](http://schoolofdata.org/handbook/)
####Machine Learning ####Machine Learning
* [Programming Computer Vision with Python](http://programmingcomputervision.com/) * [Programming Computer Vision with Python](http://programmingcomputervision.com/)
@ -289,7 +290,9 @@
* [Information Theory, Inference, and Learning Algorithms](http://www.inference.phy.cam.ac.uk/itila/) * [Information Theory, Inference, and Learning Algorithms](http://www.inference.phy.cam.ac.uk/itila/)
* [Artificial Intelligence | Machine Learning](http://see.stanford.edu/see/materials/aimlcs229/handouts.aspx) - Andrew Ng *(Notes, lectures, and problems)* * [Artificial Intelligence | Machine Learning](http://see.stanford.edu/see/materials/aimlcs229/handouts.aspx) - Andrew Ng *(Notes, lectures, and problems)*
* [Probabilistic Models in the Study of Language](http://idiom.ucsd.edu/~rlevy/pmsl_textbook/text.html) (Draft, with R code) * [Probabilistic Models in the Study of Language](http://idiom.ucsd.edu/~rlevy/pmsl_textbook/text.html) (Draft, with R code)
* [Reinforcement Learning: An Introduction] (http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html) * [Reinforcement Learning: An Introduction](http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html)
* [A First Encounter with Machine Learning](https://www.ics.uci.edu/~welling/teaching/ICS273Afall11/IntroMLBook.pdf) (PDF)
* [Learning Deep Architectures for AI](http://www.iro.umontreal.ca/~bengioy/papers/ftml_book.pdf) (PDF)
####Mathematics ####Mathematics
* [Think Bayes: Bayesian Statistics Made Simple](http://www.greenteapress.com/thinkbayes/) - Allen B. Downey * [Think Bayes: Bayesian Statistics Made Simple](http://www.greenteapress.com/thinkbayes/) - Allen B. Downey