gh-ost/vendor/github.com/siddontang/go-mysql/replication/row_event.go
Tim Vaillancourt 8c81334fad Use go modules
2020-08-13 17:34:41 +02:00

1549 lines
37 KiB
Go

package replication
import (
"bytes"
"encoding/binary"
"encoding/hex"
"fmt"
"io"
"strconv"
"time"
"github.com/pingcap/errors"
"github.com/shopspring/decimal"
"github.com/siddontang/go-log/log"
. "github.com/siddontang/go-mysql/mysql"
"github.com/siddontang/go/hack"
)
var errMissingTableMapEvent = errors.New("invalid table id, no corresponding table map event")
type TableMapEvent struct {
flavor string
tableIDSize int
TableID uint64
Flags uint16
Schema []byte
Table []byte
ColumnCount uint64
ColumnType []byte
ColumnMeta []uint16
//len = (ColumnCount + 7) / 8
NullBitmap []byte
/*
The followings are available only after MySQL-8.0.1 or MariaDB-10.5.0
see:
- https://dev.mysql.com/doc/refman/8.0/en/replication-options-binary-log.html#sysvar_binlog_row_metadata
- https://mysqlhighavailability.com/more-metadata-is-written-into-binary-log/
- https://jira.mariadb.org/browse/MDEV-20477
*/
// SignednessBitmap stores signedness info for numeric columns.
SignednessBitmap []byte
// DefaultCharset/ColumnCharset stores collation info for character columns.
// DefaultCharset[0] is the default collation of character columns.
// For character columns that have different charset,
// (character column index, column collation) pairs follows
DefaultCharset []uint64
// ColumnCharset contains collation sequence for all character columns
ColumnCharset []uint64
// SetStrValue stores values for set columns.
SetStrValue [][][]byte
setStrValueString [][]string
// EnumStrValue stores values for enum columns.
EnumStrValue [][][]byte
enumStrValueString [][]string
// ColumnName list all column names.
ColumnName [][]byte
columnNameString []string // the same as ColumnName in string type, just for reuse
// GeometryType stores real type for geometry columns.
GeometryType []uint64
// PrimaryKey is a sequence of column indexes of primary key.
PrimaryKey []uint64
// PrimaryKeyPrefix is the prefix length used for each column of primary key.
// 0 means that the whole column length is used.
PrimaryKeyPrefix []uint64
// EnumSetDefaultCharset/EnumSetColumnCharset is similar to DefaultCharset/ColumnCharset but for enum/set columns.
EnumSetDefaultCharset []uint64
EnumSetColumnCharset []uint64
}
func (e *TableMapEvent) Decode(data []byte) error {
pos := 0
e.TableID = FixedLengthInt(data[0:e.tableIDSize])
pos += e.tableIDSize
e.Flags = binary.LittleEndian.Uint16(data[pos:])
pos += 2
schemaLength := data[pos]
pos++
e.Schema = data[pos : pos+int(schemaLength)]
pos += int(schemaLength)
//skip 0x00
pos++
tableLength := data[pos]
pos++
e.Table = data[pos : pos+int(tableLength)]
pos += int(tableLength)
//skip 0x00
pos++
var n int
e.ColumnCount, _, n = LengthEncodedInt(data[pos:])
pos += n
e.ColumnType = data[pos : pos+int(e.ColumnCount)]
pos += int(e.ColumnCount)
var err error
var metaData []byte
if metaData, _, n, err = LengthEncodedString(data[pos:]); err != nil {
return errors.Trace(err)
}
if err = e.decodeMeta(metaData); err != nil {
return errors.Trace(err)
}
pos += n
nullBitmapSize := bitmapByteSize(int(e.ColumnCount))
if len(data[pos:]) < nullBitmapSize {
return io.EOF
}
e.NullBitmap = data[pos : pos+nullBitmapSize]
pos += nullBitmapSize
if err = e.decodeOptionalMeta(data[pos:]); err != nil {
return err
}
return nil
}
func bitmapByteSize(columnCount int) int {
return int(columnCount+7) / 8
}
// see mysql sql/log_event.h
/*
0 byte
MYSQL_TYPE_DECIMAL
MYSQL_TYPE_TINY
MYSQL_TYPE_SHORT
MYSQL_TYPE_LONG
MYSQL_TYPE_NULL
MYSQL_TYPE_TIMESTAMP
MYSQL_TYPE_LONGLONG
MYSQL_TYPE_INT24
MYSQL_TYPE_DATE
MYSQL_TYPE_TIME
MYSQL_TYPE_DATETIME
MYSQL_TYPE_YEAR
1 byte
MYSQL_TYPE_FLOAT
MYSQL_TYPE_DOUBLE
MYSQL_TYPE_BLOB
MYSQL_TYPE_GEOMETRY
//maybe
MYSQL_TYPE_TIME2
MYSQL_TYPE_DATETIME2
MYSQL_TYPE_TIMESTAMP2
2 byte
MYSQL_TYPE_VARCHAR
MYSQL_TYPE_BIT
MYSQL_TYPE_NEWDECIMAL
MYSQL_TYPE_VAR_STRING
MYSQL_TYPE_STRING
This enumeration value is only used internally and cannot exist in a binlog.
MYSQL_TYPE_NEWDATE
MYSQL_TYPE_ENUM
MYSQL_TYPE_SET
MYSQL_TYPE_TINY_BLOB
MYSQL_TYPE_MEDIUM_BLOB
MYSQL_TYPE_LONG_BLOB
*/
func (e *TableMapEvent) decodeMeta(data []byte) error {
pos := 0
e.ColumnMeta = make([]uint16, e.ColumnCount)
for i, t := range e.ColumnType {
switch t {
case MYSQL_TYPE_STRING:
var x uint16 = uint16(data[pos]) << 8 //real type
x += uint16(data[pos+1]) //pack or field length
e.ColumnMeta[i] = x
pos += 2
case MYSQL_TYPE_NEWDECIMAL:
var x uint16 = uint16(data[pos]) << 8 //precision
x += uint16(data[pos+1]) //decimals
e.ColumnMeta[i] = x
pos += 2
case MYSQL_TYPE_VAR_STRING,
MYSQL_TYPE_VARCHAR,
MYSQL_TYPE_BIT:
e.ColumnMeta[i] = binary.LittleEndian.Uint16(data[pos:])
pos += 2
case MYSQL_TYPE_BLOB,
MYSQL_TYPE_DOUBLE,
MYSQL_TYPE_FLOAT,
MYSQL_TYPE_GEOMETRY,
MYSQL_TYPE_JSON:
e.ColumnMeta[i] = uint16(data[pos])
pos++
case MYSQL_TYPE_TIME2,
MYSQL_TYPE_DATETIME2,
MYSQL_TYPE_TIMESTAMP2:
e.ColumnMeta[i] = uint16(data[pos])
pos++
case MYSQL_TYPE_NEWDATE,
MYSQL_TYPE_ENUM,
MYSQL_TYPE_SET,
MYSQL_TYPE_TINY_BLOB,
MYSQL_TYPE_MEDIUM_BLOB,
MYSQL_TYPE_LONG_BLOB:
return errors.Errorf("unsupport type in binlog %d", t)
default:
e.ColumnMeta[i] = 0
}
}
return nil
}
func (e *TableMapEvent) decodeOptionalMeta(data []byte) (err error) {
pos := 0
for pos < len(data) {
// optional metadata fields are stored in Type, Length, Value(TLV) format
// Type takes 1 byte. Length is a packed integer value. Values takes Length bytes
t := data[pos]
pos++
l, _, n := LengthEncodedInt(data[pos:])
pos += n
v := data[pos : pos+int(l)]
pos += int(l)
switch t {
case TABLE_MAP_OPT_META_SIGNEDNESS:
e.SignednessBitmap = v
case TABLE_MAP_OPT_META_DEFAULT_CHARSET:
e.DefaultCharset, err = e.decodeDefaultCharset(v)
if err != nil {
return err
}
case TABLE_MAP_OPT_META_COLUMN_CHARSET:
e.ColumnCharset, err = e.decodeIntSeq(v)
if err != nil {
return err
}
case TABLE_MAP_OPT_META_COLUMN_NAME:
if err = e.decodeColumnNames(v); err != nil {
return err
}
case TABLE_MAP_OPT_META_SET_STR_VALUE:
e.SetStrValue, err = e.decodeStrValue(v)
if err != nil {
return err
}
case TABLE_MAP_OPT_META_ENUM_STR_VALUE:
e.EnumStrValue, err = e.decodeStrValue(v)
if err != nil {
return err
}
case TABLE_MAP_OPT_META_GEOMETRY_TYPE:
e.GeometryType, err = e.decodeIntSeq(v)
if err != nil {
return err
}
case TABLE_MAP_OPT_META_SIMPLE_PRIMARY_KEY:
if err = e.decodeSimplePrimaryKey(v); err != nil {
return err
}
case TABLE_MAP_OPT_META_PRIMARY_KEY_WITH_PREFIX:
if err = e.decodePrimaryKeyWithPrefix(v); err != nil {
return err
}
case TABLE_MAP_OPT_META_ENUM_AND_SET_DEFAULT_CHARSET:
e.EnumSetDefaultCharset, err = e.decodeDefaultCharset(v)
if err != nil {
return err
}
case TABLE_MAP_OPT_META_ENUM_AND_SET_COLUMN_CHARSET:
e.EnumSetColumnCharset, err = e.decodeIntSeq(v)
if err != nil {
return err
}
default:
// Ignore for future extension
}
}
return nil
}
func (e *TableMapEvent) decodeIntSeq(v []byte) (ret []uint64, err error) {
p := 0
for p < len(v) {
i, _, n := LengthEncodedInt(v[p:])
p += n
ret = append(ret, i)
}
return
}
func (e *TableMapEvent) decodeDefaultCharset(v []byte) (ret []uint64, err error) {
ret, err = e.decodeIntSeq(v)
if err != nil {
return
}
if len(ret)%2 != 1 {
return nil, errors.Errorf("Expect odd item in DefaultCharset but got %d", len(ret))
}
return
}
func (e *TableMapEvent) decodeColumnNames(v []byte) error {
p := 0
e.ColumnName = make([][]byte, 0, e.ColumnCount)
for p < len(v) {
n := int(v[p])
p++
e.ColumnName = append(e.ColumnName, v[p:p+n])
p += n
}
if len(e.ColumnName) != int(e.ColumnCount) {
return errors.Errorf("Expect %d column names but got %d", e.ColumnCount, len(e.ColumnName))
}
return nil
}
func (e *TableMapEvent) decodeStrValue(v []byte) (ret [][][]byte, err error) {
p := 0
for p < len(v) {
nVal, _, n := LengthEncodedInt(v[p:])
p += n
vals := make([][]byte, 0, int(nVal))
for i := 0; i < int(nVal); i++ {
val, _, n, err := LengthEncodedString(v[p:])
if err != nil {
return nil, err
}
p += n
vals = append(vals, val)
}
ret = append(ret, vals)
}
return
}
func (e *TableMapEvent) decodeSimplePrimaryKey(v []byte) error {
p := 0
for p < len(v) {
i, _, n := LengthEncodedInt(v[p:])
e.PrimaryKey = append(e.PrimaryKey, i)
e.PrimaryKeyPrefix = append(e.PrimaryKeyPrefix, 0)
p += n
}
return nil
}
func (e *TableMapEvent) decodePrimaryKeyWithPrefix(v []byte) error {
p := 0
for p < len(v) {
i, _, n := LengthEncodedInt(v[p:])
e.PrimaryKey = append(e.PrimaryKey, i)
p += n
i, _, n = LengthEncodedInt(v[p:])
e.PrimaryKeyPrefix = append(e.PrimaryKeyPrefix, i)
p += n
}
return nil
}
func (e *TableMapEvent) Dump(w io.Writer) {
fmt.Fprintf(w, "TableID: %d\n", e.TableID)
fmt.Fprintf(w, "TableID size: %d\n", e.tableIDSize)
fmt.Fprintf(w, "Flags: %d\n", e.Flags)
fmt.Fprintf(w, "Schema: %s\n", e.Schema)
fmt.Fprintf(w, "Table: %s\n", e.Table)
fmt.Fprintf(w, "Column count: %d\n", e.ColumnCount)
fmt.Fprintf(w, "Column type: \n%s", hex.Dump(e.ColumnType))
fmt.Fprintf(w, "NULL bitmap: \n%s", hex.Dump(e.NullBitmap))
fmt.Fprintf(w, "Signedness bitmap: \n%s", hex.Dump(e.SignednessBitmap))
fmt.Fprintf(w, "Default charset: %v\n", e.DefaultCharset)
fmt.Fprintf(w, "Column charset: %v\n", e.ColumnCharset)
fmt.Fprintf(w, "Set str value: %v\n", e.SetStrValueString())
fmt.Fprintf(w, "Enum str value: %v\n", e.EnumStrValueString())
fmt.Fprintf(w, "Column name: %v\n", e.ColumnNameString())
fmt.Fprintf(w, "Geometry type: %v\n", e.GeometryType)
fmt.Fprintf(w, "Primary key: %v\n", e.PrimaryKey)
fmt.Fprintf(w, "Primary key prefix: %v\n", e.PrimaryKeyPrefix)
fmt.Fprintf(w, "Enum/set default charset: %v\n", e.EnumSetDefaultCharset)
fmt.Fprintf(w, "Enum/set column charset: %v\n", e.EnumSetColumnCharset)
unsignedMap := e.UnsignedMap()
fmt.Fprintf(w, "UnsignedMap: %#v\n", unsignedMap)
collationMap := e.CollationMap()
fmt.Fprintf(w, "CollationMap: %#v\n", collationMap)
enumSetCollationMap := e.EnumSetCollationMap()
fmt.Fprintf(w, "EnumSetCollationMap: %#v\n", enumSetCollationMap)
enumStrValueMap := e.EnumStrValueMap()
fmt.Fprintf(w, "EnumStrValueMap: %#v\n", enumStrValueMap)
setStrValueMap := e.SetStrValueMap()
fmt.Fprintf(w, "SetStrValueMap: %#v\n", setStrValueMap)
geometryTypeMap := e.GeometryTypeMap()
fmt.Fprintf(w, "GeometryTypeMap: %#v\n", geometryTypeMap)
nameMaxLen := 0
for _, name := range e.ColumnName {
if len(name) > nameMaxLen {
nameMaxLen = len(name)
}
}
nameFmt := " %s"
if nameMaxLen > 0 {
nameFmt = fmt.Sprintf(" %%-%ds", nameMaxLen)
}
primaryKey := map[int]struct{}{}
for _, pk := range e.PrimaryKey {
primaryKey[int(pk)] = struct{}{}
}
fmt.Fprintf(w, "Columns: \n")
for i := 0; i < int(e.ColumnCount); i++ {
if len(e.ColumnName) == 0 {
fmt.Fprintf(w, nameFmt, "<n/a>")
} else {
fmt.Fprintf(w, nameFmt, e.ColumnName[i])
}
fmt.Fprintf(w, " type=%-3d", e.realType(i))
if e.IsNumericColumn(i) {
if len(unsignedMap) == 0 {
fmt.Fprintf(w, " unsigned=<n/a>")
} else if unsignedMap[i] {
fmt.Fprintf(w, " unsigned=yes")
} else {
fmt.Fprintf(w, " unsigned=no ")
}
}
if e.IsCharacterColumn(i) {
if len(collationMap) == 0 {
fmt.Fprintf(w, " collation=<n/a>")
} else {
fmt.Fprintf(w, " collation=%d ", collationMap[i])
}
}
if e.IsEnumColumn(i) {
if len(enumSetCollationMap) == 0 {
fmt.Fprintf(w, " enum_collation=<n/a>")
} else {
fmt.Fprintf(w, " enum_collation=%d", enumSetCollationMap[i])
}
if len(enumStrValueMap) == 0 {
fmt.Fprintf(w, " enum=<n/a>")
} else {
fmt.Fprintf(w, " enum=%v", enumStrValueMap[i])
}
}
if e.IsSetColumn(i) {
if len(enumSetCollationMap) == 0 {
fmt.Fprintf(w, " set_collation=<n/a>")
} else {
fmt.Fprintf(w, " set_collation=%d", enumSetCollationMap[i])
}
if len(setStrValueMap) == 0 {
fmt.Fprintf(w, " set=<n/a>")
} else {
fmt.Fprintf(w, " set=%v", setStrValueMap[i])
}
}
if e.IsGeometryColumn(i) {
if len(geometryTypeMap) == 0 {
fmt.Fprintf(w, " geometry_type=<n/a>")
} else {
fmt.Fprintf(w, " geometry_type=%v", geometryTypeMap[i])
}
}
available, nullable := e.Nullable(i)
if !available {
fmt.Fprintf(w, " null=<n/a>")
} else if nullable {
fmt.Fprintf(w, " null=yes")
} else {
fmt.Fprintf(w, " null=no ")
}
if _, ok := primaryKey[i]; ok {
fmt.Fprintf(w, " pri")
}
fmt.Fprintf(w, "\n")
}
fmt.Fprintln(w)
}
// Nullable returns the nullablity of the i-th column.
// If null bits are not available, available is false.
// i must be in range [0, ColumnCount).
func (e *TableMapEvent) Nullable(i int) (available, nullable bool) {
if len(e.NullBitmap) == 0 {
return
}
return true, e.NullBitmap[i/8]&(1<<uint(i%8)) != 0
}
// SetStrValueString returns values for set columns as string slices.
// nil is returned if not available or no set columns at all.
func (e *TableMapEvent) SetStrValueString() [][]string {
if e.setStrValueString == nil {
if len(e.SetStrValue) == 0 {
return nil
}
e.setStrValueString = make([][]string, 0, len(e.SetStrValue))
for _, vals := range e.SetStrValue {
e.setStrValueString = append(
e.setStrValueString,
e.bytesSlice2StrSlice(vals),
)
}
}
return e.setStrValueString
}
// EnumStrValueString returns values for enum columns as string slices.
// nil is returned if not available or no enum columns at all.
func (e *TableMapEvent) EnumStrValueString() [][]string {
if e.enumStrValueString == nil {
if len(e.EnumStrValue) == 0 {
return nil
}
e.enumStrValueString = make([][]string, 0, len(e.EnumStrValue))
for _, vals := range e.EnumStrValue {
e.enumStrValueString = append(
e.enumStrValueString,
e.bytesSlice2StrSlice(vals),
)
}
}
return e.enumStrValueString
}
// ColumnNameString returns column names as string slice.
// nil is returned if not available.
func (e *TableMapEvent) ColumnNameString() []string {
if e.columnNameString == nil {
e.columnNameString = e.bytesSlice2StrSlice(e.ColumnName)
}
return e.columnNameString
}
func (e *TableMapEvent) bytesSlice2StrSlice(src [][]byte) []string {
if src == nil {
return nil
}
ret := make([]string, 0, len(src))
for _, item := range src {
ret = append(ret, string(item))
}
return ret
}
// UnsignedMap returns a map: column index -> unsigned.
// Note that only numeric columns will be returned.
// nil is returned if not available or no numeric columns at all.
func (e *TableMapEvent) UnsignedMap() map[int]bool {
if len(e.SignednessBitmap) == 0 {
return nil
}
p := 0
ret := make(map[int]bool)
for i := 0; i < int(e.ColumnCount); i++ {
if !e.IsNumericColumn(i) {
continue
}
ret[i] = e.SignednessBitmap[p/8]&(1<<uint(7-p%8)) != 0
p++
}
return ret
}
// CollationMap returns a map: column index -> collation id.
// Note that only character columns will be returned.
// nil is returned if not available or no character columns at all.
func (e *TableMapEvent) CollationMap() map[int]uint64 {
return e.collationMap(e.IsCharacterColumn, e.DefaultCharset, e.ColumnCharset)
}
// EnumSetCollationMap returns a map: column index -> collation id.
// Note that only enum or set columns will be returned.
// nil is returned if not available or no enum/set columns at all.
func (e *TableMapEvent) EnumSetCollationMap() map[int]uint64 {
return e.collationMap(e.IsEnumOrSetColumn, e.EnumSetDefaultCharset, e.EnumSetColumnCharset)
}
func (e *TableMapEvent) collationMap(includeType func(int) bool, defaultCharset, columnCharset []uint64) map[int]uint64 {
if len(defaultCharset) != 0 {
defaultCollation := defaultCharset[0]
// character column index -> collation
collations := make(map[int]uint64)
for i := 1; i < len(defaultCharset); i += 2 {
collations[int(defaultCharset[i])] = defaultCharset[i+1]
}
p := 0
ret := make(map[int]uint64)
for i := 0; i < int(e.ColumnCount); i++ {
if !includeType(i) {
continue
}
if collation, ok := collations[p]; ok {
ret[i] = collation
} else {
ret[i] = defaultCollation
}
p++
}
return ret
}
if len(columnCharset) != 0 {
p := 0
ret := make(map[int]uint64)
for i := 0; i < int(e.ColumnCount); i++ {
if !includeType(i) {
continue
}
ret[i] = columnCharset[p]
p++
}
return ret
}
return nil
}
// EnumStrValueMap returns a map: column index -> enum string value.
// Note that only enum columns will be returned.
// nil is returned if not available or no enum columns at all.
func (e *TableMapEvent) EnumStrValueMap() map[int][]string {
return e.strValueMap(e.IsEnumColumn, e.EnumStrValueString())
}
// SetStrValueMap returns a map: column index -> set string value.
// Note that only set columns will be returned.
// nil is returned if not available or no set columns at all.
func (e *TableMapEvent) SetStrValueMap() map[int][]string {
return e.strValueMap(e.IsSetColumn, e.SetStrValueString())
}
func (e *TableMapEvent) strValueMap(includeType func(int) bool, strValue [][]string) map[int][]string {
if len(strValue) == 0 {
return nil
}
p := 0
ret := make(map[int][]string)
for i := 0; i < int(e.ColumnCount); i++ {
if !includeType(i) {
continue
}
ret[i] = strValue[p]
p++
}
return ret
}
// GeometryTypeMap returns a map: column index -> geometry type.
// Note that only geometry columns will be returned.
// nil is returned if not available or no geometry columns at all.
func (e *TableMapEvent) GeometryTypeMap() map[int]uint64 {
if len(e.GeometryType) == 0 {
return nil
}
p := 0
ret := make(map[int]uint64)
for i := 0; i < int(e.ColumnCount); i++ {
if !e.IsGeometryColumn(i) {
continue
}
ret[i] = e.GeometryType[p]
p++
}
return ret
}
// Below realType and IsXXXColumn are base from:
// table_def::type in sql/rpl_utility.h
// Table_map_log_event::print_columns in mysql-8.0/sql/log_event.cc and mariadb-10.5/sql/log_event_client.cc
func (e *TableMapEvent) realType(i int) byte {
typ := e.ColumnType[i]
switch typ {
case MYSQL_TYPE_STRING:
rtyp := byte(e.ColumnMeta[i] >> 8)
if rtyp == MYSQL_TYPE_ENUM || rtyp == MYSQL_TYPE_SET {
return rtyp
}
case MYSQL_TYPE_DATE:
return MYSQL_TYPE_NEWDATE
}
return typ
}
func (e *TableMapEvent) IsNumericColumn(i int) bool {
switch e.realType(i) {
case MYSQL_TYPE_TINY,
MYSQL_TYPE_SHORT,
MYSQL_TYPE_INT24,
MYSQL_TYPE_LONG,
MYSQL_TYPE_LONGLONG,
MYSQL_TYPE_NEWDECIMAL,
MYSQL_TYPE_FLOAT,
MYSQL_TYPE_DOUBLE:
return true
default:
return false
}
}
// IsCharacterColumn returns true if the column type is considered as character type.
// Note that JSON/GEOMETRY types are treated as character type in mariadb.
// (JSON is an alias for LONGTEXT in mariadb: https://mariadb.com/kb/en/json-data-type/)
func (e *TableMapEvent) IsCharacterColumn(i int) bool {
switch e.realType(i) {
case MYSQL_TYPE_STRING,
MYSQL_TYPE_VAR_STRING,
MYSQL_TYPE_VARCHAR,
MYSQL_TYPE_BLOB:
return true
case MYSQL_TYPE_GEOMETRY:
if e.flavor == "mariadb" {
return true
}
return false
default:
return false
}
}
func (e *TableMapEvent) IsEnumColumn(i int) bool {
return e.realType(i) == MYSQL_TYPE_ENUM
}
func (e *TableMapEvent) IsSetColumn(i int) bool {
return e.realType(i) == MYSQL_TYPE_SET
}
func (e *TableMapEvent) IsGeometryColumn(i int) bool {
return e.realType(i) == MYSQL_TYPE_GEOMETRY
}
func (e *TableMapEvent) IsEnumOrSetColumn(i int) bool {
rtyp := e.realType(i)
return rtyp == MYSQL_TYPE_ENUM || rtyp == MYSQL_TYPE_SET
}
// RowsEventStmtEndFlag is set in the end of the statement.
const RowsEventStmtEndFlag = 0x01
type RowsEvent struct {
//0, 1, 2
Version int
tableIDSize int
tables map[uint64]*TableMapEvent
needBitmap2 bool
Table *TableMapEvent
TableID uint64
Flags uint16
//if version == 2
ExtraData []byte
//lenenc_int
ColumnCount uint64
//len = (ColumnCount + 7) / 8
ColumnBitmap1 []byte
//if UPDATE_ROWS_EVENTv1 or v2
//len = (ColumnCount + 7) / 8
ColumnBitmap2 []byte
//rows: invalid: int64, float64, bool, []byte, string
Rows [][]interface{}
parseTime bool
timestampStringLocation *time.Location
useDecimal bool
ignoreJSONDecodeErr bool
}
func (e *RowsEvent) Decode(data []byte) error {
pos := 0
e.TableID = FixedLengthInt(data[0:e.tableIDSize])
pos += e.tableIDSize
e.Flags = binary.LittleEndian.Uint16(data[pos:])
pos += 2
if e.Version == 2 {
dataLen := binary.LittleEndian.Uint16(data[pos:])
pos += 2
e.ExtraData = data[pos : pos+int(dataLen-2)]
pos += int(dataLen - 2)
}
var n int
e.ColumnCount, _, n = LengthEncodedInt(data[pos:])
pos += n
bitCount := bitmapByteSize(int(e.ColumnCount))
e.ColumnBitmap1 = data[pos : pos+bitCount]
pos += bitCount
if e.needBitmap2 {
e.ColumnBitmap2 = data[pos : pos+bitCount]
pos += bitCount
}
var ok bool
e.Table, ok = e.tables[e.TableID]
if !ok {
if len(e.tables) > 0 {
return errors.Errorf("invalid table id %d, no corresponding table map event", e.TableID)
} else {
return errors.Annotatef(errMissingTableMapEvent, "table id %d", e.TableID)
}
}
var err error
// ... repeat rows until event-end
defer func() {
if r := recover(); r != nil {
log.Fatalf("parse rows event panic %v, data %q, parsed rows %#v, table map %#v\n%s", r, data, e, e.Table, Pstack())
}
}()
// Pre-allocate memory for rows.
rowsLen := e.ColumnCount
if e.needBitmap2 {
rowsLen += e.ColumnCount
}
e.Rows = make([][]interface{}, 0, rowsLen)
for pos < len(data) {
if n, err = e.decodeRows(data[pos:], e.Table, e.ColumnBitmap1); err != nil {
return errors.Trace(err)
}
pos += n
if e.needBitmap2 {
if n, err = e.decodeRows(data[pos:], e.Table, e.ColumnBitmap2); err != nil {
return errors.Trace(err)
}
pos += n
}
}
return nil
}
func isBitSet(bitmap []byte, i int) bool {
return bitmap[i>>3]&(1<<(uint(i)&7)) > 0
}
func (e *RowsEvent) decodeRows(data []byte, table *TableMapEvent, bitmap []byte) (int, error) {
row := make([]interface{}, e.ColumnCount)
pos := 0
// refer: https://github.com/alibaba/canal/blob/c3e38e50e269adafdd38a48c63a1740cde304c67/dbsync/src/main/java/com/taobao/tddl/dbsync/binlog/event/RowsLogBuffer.java#L63
count := 0
for i := 0; i < int(e.ColumnCount); i++ {
if isBitSet(bitmap, i) {
count++
}
}
count = (count + 7) / 8
nullBitmap := data[pos : pos+count]
pos += count
nullbitIndex := 0
var n int
var err error
for i := 0; i < int(e.ColumnCount); i++ {
if !isBitSet(bitmap, i) {
continue
}
isNull := (uint32(nullBitmap[nullbitIndex/8]) >> uint32(nullbitIndex%8)) & 0x01
nullbitIndex++
if isNull > 0 {
row[i] = nil
continue
}
row[i], n, err = e.decodeValue(data[pos:], table.ColumnType[i], table.ColumnMeta[i])
if err != nil {
return 0, err
}
pos += n
}
e.Rows = append(e.Rows, row)
return pos, nil
}
func (e *RowsEvent) parseFracTime(t interface{}) interface{} {
v, ok := t.(fracTime)
if !ok {
return t
}
if !e.parseTime {
// Don't parse time, return string directly
return v.String()
}
// return Golang time directly
return v.Time
}
// see mysql sql/log_event.cc log_event_print_value
func (e *RowsEvent) decodeValue(data []byte, tp byte, meta uint16) (v interface{}, n int, err error) {
var length int = 0
if tp == MYSQL_TYPE_STRING {
if meta >= 256 {
b0 := uint8(meta >> 8)
b1 := uint8(meta & 0xFF)
if b0&0x30 != 0x30 {
length = int(uint16(b1) | (uint16((b0&0x30)^0x30) << 4))
tp = byte(b0 | 0x30)
} else {
length = int(meta & 0xFF)
tp = b0
}
} else {
length = int(meta)
}
}
switch tp {
case MYSQL_TYPE_NULL:
return nil, 0, nil
case MYSQL_TYPE_LONG:
n = 4
v = ParseBinaryInt32(data)
case MYSQL_TYPE_TINY:
n = 1
v = ParseBinaryInt8(data)
case MYSQL_TYPE_SHORT:
n = 2
v = ParseBinaryInt16(data)
case MYSQL_TYPE_INT24:
n = 3
v = ParseBinaryInt24(data)
case MYSQL_TYPE_LONGLONG:
n = 8
v = ParseBinaryInt64(data)
case MYSQL_TYPE_NEWDECIMAL:
prec := uint8(meta >> 8)
scale := uint8(meta & 0xFF)
v, n, err = decodeDecimal(data, int(prec), int(scale), e.useDecimal)
case MYSQL_TYPE_FLOAT:
n = 4
v = ParseBinaryFloat32(data)
case MYSQL_TYPE_DOUBLE:
n = 8
v = ParseBinaryFloat64(data)
case MYSQL_TYPE_BIT:
nbits := ((meta >> 8) * 8) + (meta & 0xFF)
n = int(nbits+7) / 8
//use int64 for bit
v, err = decodeBit(data, int(nbits), int(n))
case MYSQL_TYPE_TIMESTAMP:
n = 4
t := binary.LittleEndian.Uint32(data)
if t == 0 {
v = formatZeroTime(0, 0)
} else {
v = e.parseFracTime(fracTime{
Time: time.Unix(int64(t), 0),
Dec: 0,
timestampStringLocation: e.timestampStringLocation,
})
}
case MYSQL_TYPE_TIMESTAMP2:
v, n, err = decodeTimestamp2(data, meta, e.timestampStringLocation)
v = e.parseFracTime(v)
case MYSQL_TYPE_DATETIME:
n = 8
i64 := binary.LittleEndian.Uint64(data)
if i64 == 0 {
v = formatZeroTime(0, 0)
} else {
d := i64 / 1000000
t := i64 % 1000000
v = e.parseFracTime(fracTime{
Time: time.Date(
int(d/10000),
time.Month((d%10000)/100),
int(d%100),
int(t/10000),
int((t%10000)/100),
int(t%100),
0,
time.UTC,
),
Dec: 0,
})
}
case MYSQL_TYPE_DATETIME2:
v, n, err = decodeDatetime2(data, meta)
v = e.parseFracTime(v)
case MYSQL_TYPE_TIME:
n = 3
i32 := uint32(FixedLengthInt(data[0:3]))
if i32 == 0 {
v = "00:00:00"
} else {
sign := ""
if i32 < 0 {
sign = "-"
}
v = fmt.Sprintf("%s%02d:%02d:%02d", sign, i32/10000, (i32%10000)/100, i32%100)
}
case MYSQL_TYPE_TIME2:
v, n, err = decodeTime2(data, meta)
case MYSQL_TYPE_DATE:
n = 3
i32 := uint32(FixedLengthInt(data[0:3]))
if i32 == 0 {
v = "0000-00-00"
} else {
v = fmt.Sprintf("%04d-%02d-%02d", i32/(16*32), i32/32%16, i32%32)
}
case MYSQL_TYPE_YEAR:
n = 1
year := int(data[0])
if year == 0 {
v = year
} else {
v = year + 1900
}
case MYSQL_TYPE_ENUM:
l := meta & 0xFF
switch l {
case 1:
v = int64(data[0])
n = 1
case 2:
v = int64(binary.LittleEndian.Uint16(data))
n = 2
default:
err = fmt.Errorf("Unknown ENUM packlen=%d", l)
}
case MYSQL_TYPE_SET:
n = int(meta & 0xFF)
nbits := n * 8
v, err = littleDecodeBit(data, nbits, n)
case MYSQL_TYPE_BLOB:
v, n, err = decodeBlob(data, meta)
case MYSQL_TYPE_VARCHAR,
MYSQL_TYPE_VAR_STRING:
length = int(meta)
v, n = decodeString(data, length)
case MYSQL_TYPE_STRING:
v, n = decodeString(data, length)
case MYSQL_TYPE_JSON:
// Refer: https://github.com/shyiko/mysql-binlog-connector-java/blob/master/src/main/java/com/github/shyiko/mysql/binlog/event/deserialization/AbstractRowsEventDataDeserializer.java#L404
length = int(FixedLengthInt(data[0:meta]))
n = length + int(meta)
v, err = e.decodeJsonBinary(data[meta:n])
case MYSQL_TYPE_GEOMETRY:
// MySQL saves Geometry as Blob in binlog
// Seem that the binary format is SRID (4 bytes) + WKB, outer can use
// MySQL GeoFromWKB or others to create the geometry data.
// Refer https://dev.mysql.com/doc/refman/5.7/en/gis-wkb-functions.html
// I also find some go libs to handle WKB if possible
// see https://github.com/twpayne/go-geom or https://github.com/paulmach/go.geo
v, n, err = decodeBlob(data, meta)
default:
err = fmt.Errorf("unsupport type %d in binlog and don't know how to handle", tp)
}
return
}
func decodeString(data []byte, length int) (v string, n int) {
if length < 256 {
length = int(data[0])
n = int(length) + 1
v = hack.String(data[1:n])
} else {
length = int(binary.LittleEndian.Uint16(data[0:]))
n = length + 2
v = hack.String(data[2:n])
}
return
}
const digitsPerInteger int = 9
var compressedBytes = []int{0, 1, 1, 2, 2, 3, 3, 4, 4, 4}
func decodeDecimalDecompressValue(compIndx int, data []byte, mask uint8) (size int, value uint32) {
size = compressedBytes[compIndx]
databuff := make([]byte, size)
for i := 0; i < size; i++ {
databuff[i] = data[i] ^ mask
}
value = uint32(BFixedLengthInt(databuff))
return
}
func decodeDecimal(data []byte, precision int, decimals int, useDecimal bool) (interface{}, int, error) {
//see python mysql replication and https://github.com/jeremycole/mysql_binlog
integral := (precision - decimals)
uncompIntegral := int(integral / digitsPerInteger)
uncompFractional := int(decimals / digitsPerInteger)
compIntegral := integral - (uncompIntegral * digitsPerInteger)
compFractional := decimals - (uncompFractional * digitsPerInteger)
binSize := uncompIntegral*4 + compressedBytes[compIntegral] +
uncompFractional*4 + compressedBytes[compFractional]
buf := make([]byte, binSize)
copy(buf, data[:binSize])
//must copy the data for later change
data = buf
// Support negative
// The sign is encoded in the high bit of the the byte
// But this bit can also be used in the value
value := uint32(data[0])
var res bytes.Buffer
var mask uint32 = 0
if value&0x80 == 0 {
mask = uint32((1 << 32) - 1)
res.WriteString("-")
}
//clear sign
data[0] ^= 0x80
pos, value := decodeDecimalDecompressValue(compIntegral, data, uint8(mask))
res.WriteString(fmt.Sprintf("%d", value))
for i := 0; i < uncompIntegral; i++ {
value = binary.BigEndian.Uint32(data[pos:]) ^ mask
pos += 4
res.WriteString(fmt.Sprintf("%09d", value))
}
res.WriteString(".")
for i := 0; i < uncompFractional; i++ {
value = binary.BigEndian.Uint32(data[pos:]) ^ mask
pos += 4
res.WriteString(fmt.Sprintf("%09d", value))
}
if size, value := decodeDecimalDecompressValue(compFractional, data[pos:], uint8(mask)); size > 0 {
res.WriteString(fmt.Sprintf("%0*d", compFractional, value))
pos += size
}
if useDecimal {
f, err := decimal.NewFromString(hack.String(res.Bytes()))
return f, pos, err
}
f, err := strconv.ParseFloat(hack.String(res.Bytes()), 64)
return f, pos, err
}
func decodeBit(data []byte, nbits int, length int) (value int64, err error) {
if nbits > 1 {
switch length {
case 1:
value = int64(data[0])
case 2:
value = int64(binary.BigEndian.Uint16(data))
case 3:
value = int64(BFixedLengthInt(data[0:3]))
case 4:
value = int64(binary.BigEndian.Uint32(data))
case 5:
value = int64(BFixedLengthInt(data[0:5]))
case 6:
value = int64(BFixedLengthInt(data[0:6]))
case 7:
value = int64(BFixedLengthInt(data[0:7]))
case 8:
value = int64(binary.BigEndian.Uint64(data))
default:
err = fmt.Errorf("invalid bit length %d", length)
}
} else {
if length != 1 {
err = fmt.Errorf("invalid bit length %d", length)
} else {
value = int64(data[0])
}
}
return
}
func littleDecodeBit(data []byte, nbits int, length int) (value int64, err error) {
if nbits > 1 {
switch length {
case 1:
value = int64(data[0])
case 2:
value = int64(binary.LittleEndian.Uint16(data))
case 3:
value = int64(FixedLengthInt(data[0:3]))
case 4:
value = int64(binary.LittleEndian.Uint32(data))
case 5:
value = int64(FixedLengthInt(data[0:5]))
case 6:
value = int64(FixedLengthInt(data[0:6]))
case 7:
value = int64(FixedLengthInt(data[0:7]))
case 8:
value = int64(binary.LittleEndian.Uint64(data))
default:
err = fmt.Errorf("invalid bit length %d", length)
}
} else {
if length != 1 {
err = fmt.Errorf("invalid bit length %d", length)
} else {
value = int64(data[0])
}
}
return
}
func decodeTimestamp2(data []byte, dec uint16, timestampStringLocation *time.Location) (interface{}, int, error) {
//get timestamp binary length
n := int(4 + (dec+1)/2)
sec := int64(binary.BigEndian.Uint32(data[0:4]))
usec := int64(0)
switch dec {
case 1, 2:
usec = int64(data[4]) * 10000
case 3, 4:
usec = int64(binary.BigEndian.Uint16(data[4:])) * 100
case 5, 6:
usec = int64(BFixedLengthInt(data[4:7]))
}
if sec == 0 {
return formatZeroTime(int(usec), int(dec)), n, nil
}
return fracTime{
Time: time.Unix(sec, usec*1000),
Dec: int(dec),
timestampStringLocation: timestampStringLocation,
}, n, nil
}
const DATETIMEF_INT_OFS int64 = 0x8000000000
func decodeDatetime2(data []byte, dec uint16) (interface{}, int, error) {
//get datetime binary length
n := int(5 + (dec+1)/2)
intPart := int64(BFixedLengthInt(data[0:5])) - DATETIMEF_INT_OFS
var frac int64 = 0
switch dec {
case 1, 2:
frac = int64(data[5]) * 10000
case 3, 4:
frac = int64(binary.BigEndian.Uint16(data[5:7])) * 100
case 5, 6:
frac = int64(BFixedLengthInt(data[5:8]))
}
if intPart == 0 {
return formatZeroTime(int(frac), int(dec)), n, nil
}
tmp := intPart<<24 + frac
//handle sign???
if tmp < 0 {
tmp = -tmp
}
// var secPart int64 = tmp % (1 << 24)
ymdhms := tmp >> 24
ymd := ymdhms >> 17
ym := ymd >> 5
hms := ymdhms % (1 << 17)
day := int(ymd % (1 << 5))
month := int(ym % 13)
year := int(ym / 13)
second := int(hms % (1 << 6))
minute := int((hms >> 6) % (1 << 6))
hour := int((hms >> 12))
// DATETIME encoding for nonfractional part after MySQL 5.6.4
// https://dev.mysql.com/doc/internals/en/date-and-time-data-type-representation.html
// integer value for 1970-01-01 00:00:00 is
// year*13+month = 25611 = 0b110010000001011
// day = 1 = 0b00001
// hour = 0 = 0b00000
// minute = 0 = 0b000000
// second = 0 = 0b000000
// integer value = 0b1100100000010110000100000000000000000 = 107420450816
if intPart < 107420450816 {
return formatBeforeUnixZeroTime(year, month, day, hour, minute, second, int(frac), int(dec)), n, nil
}
return fracTime{
Time: time.Date(year, time.Month(month), day, hour, minute, second, int(frac*1000), time.UTC),
Dec: int(dec),
}, n, nil
}
const TIMEF_OFS int64 = 0x800000000000
const TIMEF_INT_OFS int64 = 0x800000
func decodeTime2(data []byte, dec uint16) (string, int, error) {
//time binary length
n := int(3 + (dec+1)/2)
tmp := int64(0)
intPart := int64(0)
frac := int64(0)
switch dec {
case 1:
case 2:
intPart = int64(BFixedLengthInt(data[0:3])) - TIMEF_INT_OFS
frac = int64(data[3])
if intPart < 0 && frac > 0 {
/*
Negative values are stored with reverse fractional part order,
for binary sort compatibility.
Disk value intpart frac Time value Memory value
800000.00 0 0 00:00:00.00 0000000000.000000
7FFFFF.FF -1 255 -00:00:00.01 FFFFFFFFFF.FFD8F0
7FFFFF.9D -1 99 -00:00:00.99 FFFFFFFFFF.F0E4D0
7FFFFF.00 -1 0 -00:00:01.00 FFFFFFFFFF.000000
7FFFFE.FF -1 255 -00:00:01.01 FFFFFFFFFE.FFD8F0
7FFFFE.F6 -2 246 -00:00:01.10 FFFFFFFFFE.FE7960
Formula to convert fractional part from disk format
(now stored in "frac" variable) to absolute value: "0x100 - frac".
To reconstruct in-memory value, we shift
to the next integer value and then substruct fractional part.
*/
intPart++ /* Shift to the next integer value */
frac -= 0x100 /* -(0x100 - frac) */
}
tmp = intPart<<24 + frac*10000
case 3:
case 4:
intPart = int64(BFixedLengthInt(data[0:3])) - TIMEF_INT_OFS
frac = int64(binary.BigEndian.Uint16(data[3:5]))
if intPart < 0 && frac > 0 {
/*
Fix reverse fractional part order: "0x10000 - frac".
See comments for FSP=1 and FSP=2 above.
*/
intPart++ /* Shift to the next integer value */
frac -= 0x10000 /* -(0x10000-frac) */
}
tmp = intPart<<24 + frac*100
case 5:
case 6:
tmp = int64(BFixedLengthInt(data[0:6])) - TIMEF_OFS
default:
intPart = int64(BFixedLengthInt(data[0:3])) - TIMEF_INT_OFS
tmp = intPart << 24
}
if intPart == 0 {
return "00:00:00", n, nil
}
hms := int64(0)
sign := ""
if tmp < 0 {
tmp = -tmp
sign = "-"
}
hms = tmp >> 24
hour := (hms >> 12) % (1 << 10) /* 10 bits starting at 12th */
minute := (hms >> 6) % (1 << 6) /* 6 bits starting at 6th */
second := hms % (1 << 6) /* 6 bits starting at 0th */
secPart := tmp % (1 << 24)
if secPart != 0 {
return fmt.Sprintf("%s%02d:%02d:%02d.%06d", sign, hour, minute, second, secPart), n, nil
}
return fmt.Sprintf("%s%02d:%02d:%02d", sign, hour, minute, second), n, nil
}
func decodeBlob(data []byte, meta uint16) (v []byte, n int, err error) {
var length int
switch meta {
case 1:
length = int(data[0])
v = data[1 : 1+length]
n = length + 1
case 2:
length = int(binary.LittleEndian.Uint16(data))
v = data[2 : 2+length]
n = length + 2
case 3:
length = int(FixedLengthInt(data[0:3]))
v = data[3 : 3+length]
n = length + 3
case 4:
length = int(binary.LittleEndian.Uint32(data))
v = data[4 : 4+length]
n = length + 4
default:
err = fmt.Errorf("invalid blob packlen = %d", meta)
}
return
}
func (e *RowsEvent) Dump(w io.Writer) {
fmt.Fprintf(w, "TableID: %d\n", e.TableID)
fmt.Fprintf(w, "Flags: %d\n", e.Flags)
fmt.Fprintf(w, "Column count: %d\n", e.ColumnCount)
fmt.Fprintf(w, "Values:\n")
for _, rows := range e.Rows {
fmt.Fprintf(w, "--\n")
for j, d := range rows {
if _, ok := d.([]byte); ok {
fmt.Fprintf(w, "%d:%q\n", j, d)
} else {
fmt.Fprintf(w, "%d:%#v\n", j, d)
}
}
}
fmt.Fprintln(w)
}
type RowsQueryEvent struct {
Query []byte
}
func (e *RowsQueryEvent) Decode(data []byte) error {
//ignore length byte 1
e.Query = data[1:]
return nil
}
func (e *RowsQueryEvent) Dump(w io.Writer) {
fmt.Fprintf(w, "Query: %s\n", e.Query)
fmt.Fprintln(w)
}