2017-05-17 07:03:25 +00:00
|
|
|
<?php
|
|
|
|
|
|
|
|
declare(strict_types=1);
|
2017-04-25 06:58:02 +00:00
|
|
|
|
|
|
|
namespace Phpml\DimensionReduction;
|
|
|
|
|
|
|
|
use Phpml\Math\LinearAlgebra\EigenvalueDecomposition;
|
|
|
|
use Phpml\Math\Matrix;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Class to compute eigen pairs (values & vectors) of a given matrix
|
|
|
|
* with the consideration of numFeatures or totalVariance to be preserved
|
|
|
|
*
|
|
|
|
* @author hp
|
|
|
|
*/
|
|
|
|
abstract class EigenTransformerBase
|
|
|
|
{
|
|
|
|
/**
|
|
|
|
* Total variance to be conserved after the reduction
|
|
|
|
*
|
|
|
|
* @var float
|
|
|
|
*/
|
|
|
|
public $totalVariance = 0.9;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Number of features to be preserved after the reduction
|
|
|
|
*
|
|
|
|
* @var int
|
|
|
|
*/
|
|
|
|
public $numFeatures = null;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Top eigenvectors of the matrix
|
|
|
|
*
|
|
|
|
* @var array
|
|
|
|
*/
|
|
|
|
protected $eigVectors = [];
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Top eigenValues of the matrix
|
|
|
|
*
|
2017-05-17 07:03:25 +00:00
|
|
|
* @var array
|
2017-04-25 06:58:02 +00:00
|
|
|
*/
|
|
|
|
protected $eigValues = [];
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Calculates eigenValues and eigenVectors of the given matrix. Returns
|
|
|
|
* top eigenVectors along with the largest eigenValues. The total explained variance
|
|
|
|
* of these eigenVectors will be no less than desired $totalVariance value
|
|
|
|
*/
|
|
|
|
protected function eigenDecomposition(array $matrix)
|
|
|
|
{
|
|
|
|
$eig = new EigenvalueDecomposition($matrix);
|
|
|
|
$eigVals = $eig->getRealEigenvalues();
|
2017-08-17 06:50:37 +00:00
|
|
|
$eigVects = $eig->getEigenvectors();
|
2017-04-25 06:58:02 +00:00
|
|
|
|
|
|
|
$totalEigVal = array_sum($eigVals);
|
|
|
|
// Sort eigenvalues in descending order
|
|
|
|
arsort($eigVals);
|
|
|
|
|
|
|
|
$explainedVar = 0.0;
|
|
|
|
$vectors = [];
|
|
|
|
$values = [];
|
|
|
|
foreach ($eigVals as $i => $eigVal) {
|
|
|
|
$explainedVar += $eigVal / $totalEigVal;
|
|
|
|
$vectors[] = $eigVects[$i];
|
|
|
|
$values[] = $eigVal;
|
|
|
|
|
|
|
|
if ($this->numFeatures !== null) {
|
|
|
|
if (count($vectors) == $this->numFeatures) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
if ($explainedVar >= $this->totalVariance) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
$this->eigValues = $values;
|
|
|
|
$this->eigVectors = $vectors;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the reduced data
|
|
|
|
*/
|
2017-11-06 07:56:37 +00:00
|
|
|
protected function reduce(array $data) : array
|
2017-04-25 06:58:02 +00:00
|
|
|
{
|
|
|
|
$m1 = new Matrix($data);
|
|
|
|
$m2 = new Matrix($this->eigVectors);
|
|
|
|
|
|
|
|
return $m1->multiply($m2->transpose())->toArray();
|
|
|
|
}
|
|
|
|
}
|