php-ml/src/Phpml/Classification/Linear/Adaline.php

78 lines
2.3 KiB
PHP
Raw Normal View History

<?php
declare(strict_types=1);
namespace Phpml\Classification\Linear;
use Phpml\Classification\Classifier;
class Adaline extends Perceptron
{
/**
* Batch training is the default Adaline training algorithm
*/
const BATCH_TRAINING = 1;
/**
* Online training: Stochastic gradient descent learning
*/
const ONLINE_TRAINING = 2;
/**
* Training type may be either 'Batch' or 'Online' learning
*
* @var string
*/
protected $trainingType;
/**
* Initalize an Adaline (ADAptive LInear NEuron) classifier with given learning rate and maximum
* number of iterations used while training the classifier <br>
*
* Learning rate should be a float value between 0.0(exclusive) and 1.0 (inclusive) <br>
* Maximum number of iterations can be an integer value greater than 0 <br>
* If normalizeInputs is set to true, then every input given to the algorithm will be standardized
* by use of standard deviation and mean calculation
*
* @param int $learningRate
* @param int $maxIterations
*/
public function __construct(float $learningRate = 0.001, int $maxIterations = 1000,
bool $normalizeInputs = true, int $trainingType = self::BATCH_TRAINING)
{
if (! in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) {
throw new \Exception("Adaline can only be trained with batch and online/stochastic gradient descent algorithm");
}
$this->trainingType = $trainingType;
parent::__construct($learningRate, $maxIterations, $normalizeInputs);
}
/**
* Adapts the weights with respect to given samples and targets
* by use of gradient descent learning rule
*
* @param array $samples
* @param array $targets
*/
protected function runTraining(array $samples, array $targets)
{
// The cost function is the sum of squares
$callback = function ($weights, $sample, $target) {
$this->weights = $weights;
$output = $this->output($sample);
$gradient = $output - $target;
$error = $gradient ** 2;
return [$error, $gradient];
};
$isBatch = $this->trainingType == self::BATCH_TRAINING;
return parent::runGradientDescent($samples, $targets, $callback, $isBatch);
}
}