2017-03-27 21:46:53 +00:00
|
|
|
<?php
|
|
|
|
|
|
|
|
declare(strict_types=1);
|
|
|
|
|
|
|
|
namespace Phpml\Helper\Optimizer;
|
|
|
|
|
2017-11-22 21:16:10 +00:00
|
|
|
use Closure;
|
2018-02-23 22:05:46 +00:00
|
|
|
use Phpml\Exception\InvalidArgumentException;
|
2017-11-22 21:16:10 +00:00
|
|
|
|
2017-03-27 21:46:53 +00:00
|
|
|
/**
|
|
|
|
* Stochastic Gradient Descent optimization method
|
|
|
|
* to find a solution for the equation A.ϴ = y where
|
|
|
|
* A (samples) and y (targets) are known and ϴ is unknown.
|
|
|
|
*/
|
|
|
|
class StochasticGD extends Optimizer
|
|
|
|
{
|
|
|
|
/**
|
|
|
|
* A (samples)
|
|
|
|
*
|
|
|
|
* @var array
|
|
|
|
*/
|
2017-04-19 20:26:31 +00:00
|
|
|
protected $samples = [];
|
2017-03-27 21:46:53 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* y (targets)
|
|
|
|
*
|
|
|
|
* @var array
|
|
|
|
*/
|
2017-04-19 20:26:31 +00:00
|
|
|
protected $targets = [];
|
2017-03-27 21:46:53 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Callback function to get the gradient and cost value
|
|
|
|
* for a specific set of theta (ϴ) and a pair of sample & target
|
|
|
|
*
|
2018-01-06 12:09:33 +00:00
|
|
|
* @var \Closure|null
|
2017-03-27 21:46:53 +00:00
|
|
|
*/
|
2017-04-19 20:26:31 +00:00
|
|
|
protected $gradientCb = null;
|
2017-03-27 21:46:53 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Maximum number of iterations used to train the model
|
|
|
|
*
|
|
|
|
* @var int
|
|
|
|
*/
|
|
|
|
protected $maxIterations = 1000;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Learning rate is used to control the speed of the optimization.<br>
|
|
|
|
*
|
|
|
|
* Larger values of lr may overshoot the optimum or even cause divergence
|
|
|
|
* while small values slows down the convergence and increases the time
|
|
|
|
* required for the training
|
|
|
|
*
|
|
|
|
* @var float
|
|
|
|
*/
|
|
|
|
protected $learningRate = 0.001;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Minimum amount of change in the weights and error values
|
|
|
|
* between iterations that needs to be obtained to continue the training
|
|
|
|
*
|
|
|
|
* @var float
|
|
|
|
*/
|
|
|
|
protected $threshold = 1e-4;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Enable/Disable early stopping by checking the weight & cost values
|
|
|
|
* to see whether they changed large enough to continue the optimization
|
|
|
|
*
|
|
|
|
* @var bool
|
|
|
|
*/
|
|
|
|
protected $enableEarlyStop = true;
|
2017-11-22 21:16:10 +00:00
|
|
|
|
2017-03-27 21:46:53 +00:00
|
|
|
/**
|
|
|
|
* List of values obtained by evaluating the cost function at each iteration
|
|
|
|
* of the algorithm
|
|
|
|
*
|
|
|
|
* @var array
|
|
|
|
*/
|
2017-08-17 06:50:37 +00:00
|
|
|
protected $costValues = [];
|
2017-03-27 21:46:53 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* Initializes the SGD optimizer for the given number of dimensions
|
|
|
|
*/
|
|
|
|
public function __construct(int $dimensions)
|
|
|
|
{
|
|
|
|
// Add one more dimension for the bias
|
|
|
|
parent::__construct($dimensions + 1);
|
|
|
|
|
|
|
|
$this->dimensions = $dimensions;
|
|
|
|
}
|
|
|
|
|
2018-02-23 22:05:46 +00:00
|
|
|
public function setInitialTheta(array $theta)
|
|
|
|
{
|
|
|
|
if (count($theta) != $this->dimensions + 1) {
|
|
|
|
throw new InvalidArgumentException(sprintf('Number of values in the weights array should be %s', $this->dimensions + 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
$this->theta = $theta;
|
|
|
|
|
|
|
|
return $this;
|
|
|
|
}
|
|
|
|
|
2017-03-27 21:46:53 +00:00
|
|
|
/**
|
|
|
|
* Sets minimum value for the change in the theta values
|
|
|
|
* between iterations to continue the iterations.<br>
|
|
|
|
*
|
|
|
|
* If change in the theta is less than given value then the
|
|
|
|
* algorithm will stop training
|
|
|
|
*
|
|
|
|
* @return $this
|
|
|
|
*/
|
|
|
|
public function setChangeThreshold(float $threshold = 1e-5)
|
|
|
|
{
|
|
|
|
$this->threshold = $threshold;
|
|
|
|
|
|
|
|
return $this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Enable/Disable early stopping by checking at each iteration
|
|
|
|
* whether changes in theta or cost value are not large enough
|
|
|
|
*
|
|
|
|
* @return $this
|
|
|
|
*/
|
|
|
|
public function setEarlyStop(bool $enable = true)
|
|
|
|
{
|
|
|
|
$this->enableEarlyStop = $enable;
|
|
|
|
|
|
|
|
return $this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @return $this
|
|
|
|
*/
|
|
|
|
public function setLearningRate(float $learningRate)
|
|
|
|
{
|
|
|
|
$this->learningRate = $learningRate;
|
|
|
|
|
|
|
|
return $this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* @return $this
|
|
|
|
*/
|
|
|
|
public function setMaxIterations(int $maxIterations)
|
|
|
|
{
|
|
|
|
$this->maxIterations = $maxIterations;
|
|
|
|
|
|
|
|
return $this;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Optimization procedure finds the unknow variables for the equation A.ϴ = y
|
|
|
|
* for the given samples (A) and targets (y).<br>
|
|
|
|
*
|
|
|
|
* The cost function to minimize and the gradient of the function are to be
|
|
|
|
* handled by the callback function provided as the third parameter of the method.
|
|
|
|
*/
|
2018-01-06 12:09:33 +00:00
|
|
|
public function runOptimization(array $samples, array $targets, Closure $gradientCb): ?array
|
2017-03-27 21:46:53 +00:00
|
|
|
{
|
|
|
|
$this->samples = $samples;
|
|
|
|
$this->targets = $targets;
|
|
|
|
$this->gradientCb = $gradientCb;
|
|
|
|
|
|
|
|
$currIter = 0;
|
|
|
|
$bestTheta = null;
|
|
|
|
$bestScore = 0.0;
|
|
|
|
$this->costValues = [];
|
|
|
|
|
|
|
|
while ($this->maxIterations > $currIter++) {
|
|
|
|
$theta = $this->theta;
|
|
|
|
|
|
|
|
// Update the guess
|
|
|
|
$cost = $this->updateTheta();
|
|
|
|
|
|
|
|
// Save the best theta in the "pocket" so that
|
|
|
|
// any future set of theta worse than this will be disregarded
|
|
|
|
if ($bestTheta == null || $cost <= $bestScore) {
|
|
|
|
$bestTheta = $theta;
|
|
|
|
$bestScore = $cost;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Add the cost value for this iteration to the list
|
|
|
|
$this->costValues[] = $cost;
|
|
|
|
|
|
|
|
// Check for early stop
|
|
|
|
if ($this->enableEarlyStop && $this->earlyStop($theta)) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2017-04-19 20:26:31 +00:00
|
|
|
$this->clear();
|
|
|
|
|
2017-03-27 21:46:53 +00:00
|
|
|
// Solution in the pocket is better than or equal to the last state
|
|
|
|
// so, we use this solution
|
2018-01-06 12:09:33 +00:00
|
|
|
return $this->theta = (array) $bestTheta;
|
2017-03-27 21:46:53 +00:00
|
|
|
}
|
|
|
|
|
2017-11-22 21:16:10 +00:00
|
|
|
/**
|
|
|
|
* Returns the list of cost values for each iteration executed in
|
|
|
|
* last run of the optimization
|
|
|
|
*/
|
|
|
|
public function getCostValues(): array
|
|
|
|
{
|
|
|
|
return $this->costValues;
|
|
|
|
}
|
|
|
|
|
|
|
|
protected function updateTheta(): float
|
2017-03-27 21:46:53 +00:00
|
|
|
{
|
|
|
|
$jValue = 0.0;
|
|
|
|
$theta = $this->theta;
|
|
|
|
|
|
|
|
foreach ($this->samples as $index => $sample) {
|
|
|
|
$target = $this->targets[$index];
|
|
|
|
|
|
|
|
$result = ($this->gradientCb)($theta, $sample, $target);
|
|
|
|
|
2017-11-14 20:21:23 +00:00
|
|
|
[$error, $gradient, $penalty] = array_pad($result, 3, 0);
|
2017-03-27 21:46:53 +00:00
|
|
|
|
|
|
|
// Update bias
|
|
|
|
$this->theta[0] -= $this->learningRate * $gradient;
|
|
|
|
|
|
|
|
// Update other values
|
2017-05-17 07:03:25 +00:00
|
|
|
for ($i = 1; $i <= $this->dimensions; ++$i) {
|
2017-03-27 21:46:53 +00:00
|
|
|
$this->theta[$i] -= $this->learningRate *
|
|
|
|
($gradient * $sample[$i - 1] + $penalty * $this->theta[$i]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Sum error rate
|
|
|
|
$jValue += $error;
|
|
|
|
}
|
|
|
|
|
|
|
|
return $jValue / count($this->samples);
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Checks if the optimization is not effective enough and can be stopped
|
|
|
|
* in case large enough changes in the solution do not happen
|
|
|
|
*/
|
2017-11-06 07:56:37 +00:00
|
|
|
protected function earlyStop(array $oldTheta): bool
|
2017-03-27 21:46:53 +00:00
|
|
|
{
|
|
|
|
// Check for early stop: No change larger than threshold (default 1e-5)
|
|
|
|
$diff = array_map(
|
|
|
|
function ($w1, $w2) {
|
|
|
|
return abs($w1 - $w2) > $this->threshold ? 1 : 0;
|
|
|
|
},
|
2017-07-26 06:24:47 +00:00
|
|
|
$oldTheta,
|
|
|
|
$this->theta
|
|
|
|
);
|
2017-03-27 21:46:53 +00:00
|
|
|
|
|
|
|
if (array_sum($diff) == 0) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check if the last two cost values are almost the same
|
|
|
|
$costs = array_slice($this->costValues, -2);
|
|
|
|
if (count($costs) == 2 && abs($costs[1] - $costs[0]) < $this->threshold) {
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2017-04-19 20:26:31 +00:00
|
|
|
/**
|
|
|
|
* Clears the optimizer internal vars after the optimization process.
|
|
|
|
*/
|
2017-11-14 20:21:23 +00:00
|
|
|
protected function clear(): void
|
2017-04-19 20:26:31 +00:00
|
|
|
{
|
|
|
|
$this->samples = [];
|
|
|
|
$this->targets = [];
|
|
|
|
$this->gradientCb = null;
|
|
|
|
}
|
2017-03-27 21:46:53 +00:00
|
|
|
}
|