php-ml/src/Helper/Optimizer/StochasticGD.php

274 lines
7.0 KiB
PHP
Raw Normal View History

<?php
declare(strict_types=1);
namespace Phpml\Helper\Optimizer;
use Closure;
use Phpml\Exception\InvalidArgumentException;
/**
* Stochastic Gradient Descent optimization method
* to find a solution for the equation A.ϴ = y where
* A (samples) and y (targets) are known and ϴ is unknown.
*/
class StochasticGD extends Optimizer
{
/**
* A (samples)
*
* @var array
*/
protected $samples = [];
/**
* y (targets)
*
* @var array
*/
protected $targets = [];
/**
* Callback function to get the gradient and cost value
* for a specific set of theta (ϴ) and a pair of sample & target
*
* @var \Closure|null
*/
protected $gradientCb = null;
/**
* Maximum number of iterations used to train the model
*
* @var int
*/
protected $maxIterations = 1000;
/**
* Learning rate is used to control the speed of the optimization.<br>
*
* Larger values of lr may overshoot the optimum or even cause divergence
* while small values slows down the convergence and increases the time
* required for the training
*
* @var float
*/
protected $learningRate = 0.001;
/**
* Minimum amount of change in the weights and error values
* between iterations that needs to be obtained to continue the training
*
* @var float
*/
protected $threshold = 1e-4;
/**
* Enable/Disable early stopping by checking the weight & cost values
* to see whether they changed large enough to continue the optimization
*
* @var bool
*/
protected $enableEarlyStop = true;
/**
* List of values obtained by evaluating the cost function at each iteration
* of the algorithm
*
* @var array
*/
protected $costValues = [];
/**
* Initializes the SGD optimizer for the given number of dimensions
*/
public function __construct(int $dimensions)
{
// Add one more dimension for the bias
parent::__construct($dimensions + 1);
$this->dimensions = $dimensions;
}
public function setInitialTheta(array $theta)
{
if (count($theta) != $this->dimensions + 1) {
throw new InvalidArgumentException(sprintf('Number of values in the weights array should be %s', $this->dimensions + 1));
}
$this->theta = $theta;
return $this;
}
/**
* Sets minimum value for the change in the theta values
* between iterations to continue the iterations.<br>
*
* If change in the theta is less than given value then the
* algorithm will stop training
*
* @return $this
*/
public function setChangeThreshold(float $threshold = 1e-5)
{
$this->threshold = $threshold;
return $this;
}
/**
* Enable/Disable early stopping by checking at each iteration
* whether changes in theta or cost value are not large enough
*
* @return $this
*/
public function setEarlyStop(bool $enable = true)
{
$this->enableEarlyStop = $enable;
return $this;
}
/**
* @return $this
*/
public function setLearningRate(float $learningRate)
{
$this->learningRate = $learningRate;
return $this;
}
/**
* @return $this
*/
public function setMaxIterations(int $maxIterations)
{
$this->maxIterations = $maxIterations;
return $this;
}
/**
* Optimization procedure finds the unknow variables for the equation A.ϴ = y
* for the given samples (A) and targets (y).<br>
*
* The cost function to minimize and the gradient of the function are to be
* handled by the callback function provided as the third parameter of the method.
*/
public function runOptimization(array $samples, array $targets, Closure $gradientCb): ?array
{
$this->samples = $samples;
$this->targets = $targets;
$this->gradientCb = $gradientCb;
$currIter = 0;
$bestTheta = null;
$bestScore = 0.0;
$this->costValues = [];
while ($this->maxIterations > $currIter++) {
$theta = $this->theta;
// Update the guess
$cost = $this->updateTheta();
// Save the best theta in the "pocket" so that
// any future set of theta worse than this will be disregarded
if ($bestTheta == null || $cost <= $bestScore) {
$bestTheta = $theta;
$bestScore = $cost;
}
// Add the cost value for this iteration to the list
$this->costValues[] = $cost;
// Check for early stop
if ($this->enableEarlyStop && $this->earlyStop($theta)) {
break;
}
}
$this->clear();
// Solution in the pocket is better than or equal to the last state
// so, we use this solution
return $this->theta = (array) $bestTheta;
}
/**
* Returns the list of cost values for each iteration executed in
* last run of the optimization
*/
public function getCostValues(): array
{
return $this->costValues;
}
protected function updateTheta(): float
{
$jValue = 0.0;
$theta = $this->theta;
foreach ($this->samples as $index => $sample) {
$target = $this->targets[$index];
$result = ($this->gradientCb)($theta, $sample, $target);
[$error, $gradient, $penalty] = array_pad($result, 3, 0);
// Update bias
$this->theta[0] -= $this->learningRate * $gradient;
// Update other values
for ($i = 1; $i <= $this->dimensions; ++$i) {
$this->theta[$i] -= $this->learningRate *
($gradient * $sample[$i - 1] + $penalty * $this->theta[$i]);
}
// Sum error rate
$jValue += $error;
}
return $jValue / count($this->samples);
}
/**
* Checks if the optimization is not effective enough and can be stopped
* in case large enough changes in the solution do not happen
*/
protected function earlyStop(array $oldTheta): bool
{
// Check for early stop: No change larger than threshold (default 1e-5)
$diff = array_map(
function ($w1, $w2) {
return abs($w1 - $w2) > $this->threshold ? 1 : 0;
},
2017-07-26 06:24:47 +00:00
$oldTheta,
$this->theta
);
if (array_sum($diff) == 0) {
return true;
}
// Check if the last two cost values are almost the same
$costs = array_slice($this->costValues, -2);
if (count($costs) == 2 && abs($costs[1] - $costs[0]) < $this->threshold) {
return true;
}
return false;
}
/**
* Clears the optimizer internal vars after the optimization process.
*/
protected function clear(): void
{
$this->samples = [];
$this->targets = [];
$this->gradientCb = null;
}
}