php-ml/tests/Phpml/Classification/DecisionTreeTest.php

87 lines
3.3 KiB
PHP
Raw Normal View History

<?php
declare(strict_types=1);
namespace tests\Classification;
use Phpml\Classification\DecisionTree;
use Phpml\ModelManager;
class DecisionTreeTest extends \PHPUnit_Framework_TestCase
{
private $data = [
['sunny', 85, 85, 'false', 'Dont_play' ],
['sunny', 80, 90, 'true', 'Dont_play' ],
['overcast', 83, 78, 'false', 'Play' ],
['rain', 70, 96, 'false', 'Play' ],
['rain', 68, 80, 'false', 'Play' ],
['rain', 65, 70, 'true', 'Dont_play' ],
['overcast', 64, 65, 'true', 'Play' ],
['sunny', 72, 95, 'false', 'Dont_play' ],
['sunny', 69, 70, 'false', 'Play' ],
['rain', 75, 80, 'false', 'Play' ],
['sunny', 75, 70, 'true', 'Play' ],
['overcast', 72, 90, 'true', 'Play' ],
['overcast', 81, 75, 'false', 'Play' ],
['rain', 71, 80, 'true', 'Dont_play' ]
];
private $extraData = [
['scorching', 90, 95, 'false', 'Dont_play'],
['scorching', 100, 93, 'true', 'Dont_play'],
];
private function getData($input)
{
$targets = array_column($input, 4);
array_walk($input, function (&$v) {
array_splice($v, 4, 1);
});
return [$input, $targets];
}
public function testPredictSingleSample()
{
list($data, $targets) = $this->getData($this->data);
$classifier = new DecisionTree(5);
$classifier->train($data, $targets);
$this->assertEquals('Dont_play', $classifier->predict(['sunny', 78, 72, 'false']));
$this->assertEquals('Play', $classifier->predict(['overcast', 60, 60, 'false']));
$this->assertEquals('Dont_play', $classifier->predict(['rain', 60, 60, 'true']));
list($data, $targets) = $this->getData($this->extraData);
$classifier->train($data, $targets);
$this->assertEquals('Dont_play', $classifier->predict(['scorching', 95, 90, 'true']));
$this->assertEquals('Play', $classifier->predict(['overcast', 60, 60, 'false']));
return $classifier;
}
public function testSaveAndRestore()
{
list($data, $targets) = $this->getData($this->data);
$classifier = new DecisionTree(5);
$classifier->train($data, $targets);
$testSamples = [['sunny', 78, 72, 'false'], ['overcast', 60, 60, 'false']];
$predicted = $classifier->predict($testSamples);
$filename = 'decision-tree-test-'.rand(100, 999).'-'.uniqid();
$filepath = tempnam(sys_get_temp_dir(), $filename);
$modelManager = new ModelManager();
$modelManager->saveToFile($classifier, $filepath);
$restoredClassifier = $modelManager->restoreFromFile($filepath);
$this->assertEquals($classifier, $restoredClassifier);
$this->assertEquals($predicted, $restoredClassifier->predict($testSamples));
}
public function testTreeDepth()
{
list($data, $targets) = $this->getData($this->data);
$classifier = new DecisionTree(5);
$classifier->train($data, $targets);
$this->assertTrue(5 >= $classifier->actualDepth);
}
}