30 lines
727 B
Markdown
Raw Normal View History

2016-04-16 21:41:37 +02:00
# NaiveBayes Classifier
Classifier based on applying Bayes' theorem with strong (naive) independence assumptions between the features.
### Train
2016-05-02 13:49:19 +02:00
To train a classifier simply provide train samples and labels (as `array`). Example:
2016-04-16 21:41:37 +02:00
```
$samples = [[5, 1, 1], [1, 5, 1], [1, 1, 5]];
$labels = ['a', 'b', 'c'];
$classifier = new NaiveBayes();
$classifier->train($samples, $labels);
```
You can train the classifier using multiple data sets, predictions will be based on all the training data.
2016-04-16 21:41:37 +02:00
### Predict
2016-05-02 13:49:19 +02:00
To predict sample label use `predict` method. You can provide one sample or array of samples:
2016-04-16 21:41:37 +02:00
```
$classifier->predict([3, 1, 1]);
// return 'a'
2019-01-23 09:41:44 +01:00
$classifier->predict([[3, 1, 1], [1, 4, 1]]);
2016-04-16 21:41:37 +02:00
// return ['a', 'b']
```