2017-04-23 07:03:30 +00:00
|
|
|
<?php
|
|
|
|
|
|
|
|
declare(strict_types=1);
|
|
|
|
|
2018-01-06 12:09:33 +00:00
|
|
|
namespace Phpml\Tests\Math\LinearAlgebra;
|
2017-04-23 07:03:30 +00:00
|
|
|
|
|
|
|
use Phpml\Math\LinearAlgebra\EigenvalueDecomposition;
|
|
|
|
use Phpml\Math\Matrix;
|
|
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
|
|
|
|
class EigenDecompositionTest extends TestCase
|
|
|
|
{
|
2017-11-14 20:21:23 +00:00
|
|
|
public function testSymmetricMatrixEigenPairs(): void
|
2017-04-23 07:03:30 +00:00
|
|
|
{
|
|
|
|
// Acceptable error
|
|
|
|
$epsilon = 0.001;
|
|
|
|
|
|
|
|
// First a simple example whose result is known and given in
|
|
|
|
// http://www.cs.otago.ac.nz/cosc453/student_tutorials/principal_components.pdf
|
|
|
|
$matrix = [
|
|
|
|
[0.616555556, 0.615444444],
|
2017-11-22 21:16:10 +00:00
|
|
|
[0.614444444, 0.716555556],
|
2017-04-23 07:03:30 +00:00
|
|
|
];
|
|
|
|
$knownEigvalues = [0.0490833989, 1.28402771];
|
2017-08-17 06:50:37 +00:00
|
|
|
$knownEigvectors = [[-0.735178656, 0.677873399], [-0.677873399, -0.735178656]];
|
2017-04-23 07:03:30 +00:00
|
|
|
|
|
|
|
$decomp = new EigenvalueDecomposition($matrix);
|
|
|
|
$eigVectors = $decomp->getEigenvectors();
|
|
|
|
$eigValues = $decomp->getRealEigenvalues();
|
|
|
|
$this->assertEquals($knownEigvalues, $eigValues, '', $epsilon);
|
|
|
|
$this->assertEquals($knownEigvectors, $eigVectors, '', $epsilon);
|
|
|
|
|
|
|
|
// Secondly, generate a symmetric square matrix
|
|
|
|
// and test for A.v=λ.v
|
|
|
|
//
|
|
|
|
// (We, for now, omit non-symmetric matrices whose eigenvalues can be complex numbers)
|
|
|
|
$len = 3;
|
|
|
|
$A = array_fill(0, $len, array_fill(0, $len, 0.0));
|
2017-09-02 19:41:06 +00:00
|
|
|
$seed = microtime(true) * 1000;
|
|
|
|
srand((int) $seed);
|
2017-08-17 06:50:37 +00:00
|
|
|
for ($i = 0; $i < $len; ++$i) {
|
|
|
|
for ($k = 0; $k < $len; ++$k) {
|
2017-04-23 07:03:30 +00:00
|
|
|
if ($i > $k) {
|
|
|
|
$A[$i][$k] = $A[$k][$i];
|
|
|
|
} else {
|
2017-11-22 21:16:10 +00:00
|
|
|
$A[$i][$k] = random_int(0, 10);
|
2017-04-23 07:03:30 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
$decomp = new EigenvalueDecomposition($A);
|
|
|
|
$eigValues = $decomp->getRealEigenvalues();
|
2017-08-17 06:50:37 +00:00
|
|
|
$eigVectors = $decomp->getEigenvectors();
|
2017-04-23 07:03:30 +00:00
|
|
|
|
|
|
|
foreach ($eigValues as $index => $lambda) {
|
|
|
|
$m1 = new Matrix($A);
|
|
|
|
$m2 = (new Matrix($eigVectors[$index]))->transpose();
|
|
|
|
|
|
|
|
// A.v=λ.v
|
|
|
|
$leftSide = $m1->multiply($m2)->toArray();
|
2017-08-17 06:50:37 +00:00
|
|
|
$rightSide = $m2->multiplyByScalar($lambda)->toArray();
|
2017-04-23 07:03:30 +00:00
|
|
|
|
|
|
|
$this->assertEquals($leftSide, $rightSide, '', $epsilon);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|