2016-04-08 22:11:59 +02:00
|
|
|
<?php
|
2016-04-08 22:49:17 +02:00
|
|
|
|
|
|
|
declare (strict_types = 1);
|
2016-04-08 22:11:59 +02:00
|
|
|
|
|
|
|
namespace tests\Phpml\Metric;
|
|
|
|
|
2016-05-31 20:01:54 +02:00
|
|
|
use Phpml\Classification\SVC;
|
|
|
|
use Phpml\CrossValidation\RandomSplit;
|
|
|
|
use Phpml\Dataset\Demo\Iris;
|
2016-04-08 22:11:59 +02:00
|
|
|
use Phpml\Metric\Accuracy;
|
2016-05-31 20:01:54 +02:00
|
|
|
use Phpml\SupportVectorMachine\Kernel;
|
2016-04-08 22:11:59 +02:00
|
|
|
|
|
|
|
class AccuracyTest extends \PHPUnit_Framework_TestCase
|
|
|
|
{
|
|
|
|
/**
|
|
|
|
* @expectedException \Phpml\Exception\InvalidArgumentException
|
|
|
|
*/
|
|
|
|
public function testThrowExceptionOnInvalidArguments()
|
|
|
|
{
|
|
|
|
$actualLabels = ['a', 'b', 'a', 'b'];
|
|
|
|
$predictedLabels = ['a', 'a'];
|
|
|
|
|
|
|
|
Accuracy::score($actualLabels, $predictedLabels);
|
|
|
|
}
|
|
|
|
|
|
|
|
public function testCalculateNormalizedScore()
|
|
|
|
{
|
|
|
|
$actualLabels = ['a', 'b', 'a', 'b'];
|
|
|
|
$predictedLabels = ['a', 'a', 'b', 'b'];
|
|
|
|
|
|
|
|
$this->assertEquals(0.5, Accuracy::score($actualLabels, $predictedLabels));
|
|
|
|
}
|
|
|
|
|
|
|
|
public function testCalculateNotNormalizedScore()
|
|
|
|
{
|
|
|
|
$actualLabels = ['a', 'b', 'a', 'b'];
|
|
|
|
$predictedLabels = ['a', 'b', 'b', 'b'];
|
|
|
|
|
|
|
|
$this->assertEquals(3, Accuracy::score($actualLabels, $predictedLabels, false));
|
|
|
|
}
|
2016-05-31 20:01:54 +02:00
|
|
|
|
|
|
|
public function testAccuracyOnDemoDataset()
|
|
|
|
{
|
|
|
|
$dataset = new RandomSplit(new Iris(), 0.5, 123);
|
|
|
|
|
|
|
|
$classifier = new SVC(Kernel::RBF);
|
|
|
|
$classifier->train($dataset->getTrainSamples(), $dataset->getTrainLabels());
|
|
|
|
|
|
|
|
$predicted = $classifier->predict($dataset->getTestSamples());
|
|
|
|
|
|
|
|
$accuracy = Accuracy::score($dataset->getTestLabels(), $predicted);
|
|
|
|
|
|
|
|
$this->assertEquals(0.959, $accuracy, '', 0.01);
|
|
|
|
}
|
2016-04-08 22:11:59 +02:00
|
|
|
}
|