2016-02-09 06:45:07 +00:00
|
|
|
<?php
|
2016-04-04 20:49:54 +00:00
|
|
|
|
|
|
|
declare (strict_types = 1);
|
2016-02-09 06:45:07 +00:00
|
|
|
|
2016-04-30 21:45:21 +00:00
|
|
|
namespace Phpml\Classification;
|
2016-02-09 06:45:07 +00:00
|
|
|
|
2016-05-07 21:04:58 +00:00
|
|
|
use Phpml\Helper\Predictable;
|
|
|
|
use Phpml\Helper\Trainable;
|
2016-04-16 19:24:40 +00:00
|
|
|
|
2016-04-04 20:25:27 +00:00
|
|
|
class NaiveBayes implements Classifier
|
2016-02-09 06:45:07 +00:00
|
|
|
{
|
2016-04-16 19:24:40 +00:00
|
|
|
use Trainable, Predictable;
|
2016-04-14 20:56:54 +00:00
|
|
|
|
|
|
|
/**
|
|
|
|
* @param array $sample
|
|
|
|
*
|
|
|
|
* @return mixed
|
|
|
|
*/
|
2016-04-19 20:54:15 +00:00
|
|
|
protected function predictSample(array $sample)
|
2016-04-14 20:56:54 +00:00
|
|
|
{
|
|
|
|
$predictions = [];
|
2016-06-16 07:58:12 +00:00
|
|
|
foreach ($this->targets as $index => $label) {
|
2016-04-14 20:56:54 +00:00
|
|
|
$predictions[$label] = 0;
|
|
|
|
foreach ($sample as $token => $count) {
|
|
|
|
if (array_key_exists($token, $this->samples[$index])) {
|
|
|
|
$predictions[$label] += $count * $this->samples[$index][$token];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
arsort($predictions, SORT_NUMERIC);
|
|
|
|
reset($predictions);
|
|
|
|
|
|
|
|
return key($predictions);
|
2016-04-04 20:25:27 +00:00
|
|
|
}
|
2016-02-09 06:45:07 +00:00
|
|
|
}
|