2017-02-16 22:23:55 +00:00
|
|
|
<?php
|
|
|
|
|
|
|
|
declare(strict_types=1);
|
|
|
|
|
|
|
|
namespace tests\Classification\Linear;
|
|
|
|
|
|
|
|
use Phpml\Classification\Linear\Perceptron;
|
|
|
|
use Phpml\ModelManager;
|
|
|
|
use PHPUnit\Framework\TestCase;
|
|
|
|
|
|
|
|
class PerceptronTest extends TestCase
|
|
|
|
{
|
|
|
|
public function testPredictSingleSample()
|
|
|
|
{
|
|
|
|
// AND problem
|
2017-02-28 20:45:18 +00:00
|
|
|
$samples = [[0, 0], [1, 0], [0, 1], [1, 1], [0.6, 0.6]];
|
2017-02-16 22:23:55 +00:00
|
|
|
$targets = [0, 0, 0, 1, 1];
|
|
|
|
$classifier = new Perceptron(0.001, 5000);
|
|
|
|
$classifier->train($samples, $targets);
|
|
|
|
$this->assertEquals(0, $classifier->predict([0.1, 0.2]));
|
2017-02-28 20:45:18 +00:00
|
|
|
$this->assertEquals(0, $classifier->predict([0, 1]));
|
2017-02-16 22:23:55 +00:00
|
|
|
$this->assertEquals(1, $classifier->predict([1.1, 0.8]));
|
|
|
|
|
|
|
|
// OR problem
|
2017-02-28 20:45:18 +00:00
|
|
|
$samples = [[0.1, 0.1], [0.4, 0.], [0., 0.3], [1, 0], [0, 1], [1, 1]];
|
|
|
|
$targets = [0, 0, 0, 1, 1, 1];
|
|
|
|
$classifier = new Perceptron(0.001, 5000, false);
|
2017-02-16 22:23:55 +00:00
|
|
|
$classifier->train($samples, $targets);
|
2017-02-28 20:45:18 +00:00
|
|
|
$this->assertEquals(0, $classifier->predict([0., 0.]));
|
2017-02-16 22:23:55 +00:00
|
|
|
$this->assertEquals(1, $classifier->predict([0.1, 0.99]));
|
|
|
|
$this->assertEquals(1, $classifier->predict([1.1, 0.8]));
|
|
|
|
|
2017-03-05 08:43:19 +00:00
|
|
|
// By use of One-v-Rest, Perceptron can perform multi-class classification
|
|
|
|
// The samples should be separable by lines perpendicular to the dimensions
|
|
|
|
$samples = [
|
|
|
|
[0, 0], [0, 1], [1, 0], [1, 1], // First group : a cluster at bottom-left corner in 2D
|
|
|
|
[5, 5], [6, 5], [5, 6], [7, 5], // Second group: another cluster at the middle-right
|
|
|
|
[3, 10],[3, 10],[3, 8], [3, 9] // Third group : cluster at the top-middle
|
|
|
|
];
|
|
|
|
$targets = [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2];
|
|
|
|
|
|
|
|
$classifier = new Perceptron();
|
|
|
|
$classifier->train($samples, $targets);
|
|
|
|
$this->assertEquals(0, $classifier->predict([0.5, 0.5]));
|
|
|
|
$this->assertEquals(1, $classifier->predict([6.0, 5.0]));
|
|
|
|
$this->assertEquals(2, $classifier->predict([3.0, 9.5]));
|
|
|
|
|
2017-02-16 22:23:55 +00:00
|
|
|
return $classifier;
|
|
|
|
}
|
|
|
|
|
|
|
|
public function testSaveAndRestore()
|
|
|
|
{
|
|
|
|
// Instantinate new Percetron trained for OR problem
|
|
|
|
$samples = [[0, 0], [1, 0], [0, 1], [1, 1]];
|
|
|
|
$targets = [0, 1, 1, 1];
|
|
|
|
$classifier = new Perceptron();
|
|
|
|
$classifier->train($samples, $targets);
|
|
|
|
$testSamples = [[0, 1], [1, 1], [0.2, 0.1]];
|
|
|
|
$predicted = $classifier->predict($testSamples);
|
|
|
|
|
|
|
|
$filename = 'perceptron-test-'.rand(100, 999).'-'.uniqid();
|
|
|
|
$filepath = tempnam(sys_get_temp_dir(), $filename);
|
|
|
|
$modelManager = new ModelManager();
|
|
|
|
$modelManager->saveToFile($classifier, $filepath);
|
|
|
|
|
|
|
|
$restoredClassifier = $modelManager->restoreFromFile($filepath);
|
|
|
|
$this->assertEquals($classifier, $restoredClassifier);
|
|
|
|
$this->assertEquals($predicted, $restoredClassifier->predict($testSamples));
|
|
|
|
}
|
|
|
|
}
|