php-ml/docs/machine-learning/metric/classification-report.md

67 lines
1.8 KiB
Markdown
Raw Normal View History

2016-07-19 22:17:03 +02:00
# Classification Report
Class for calculate main classifier metrics: precision, recall, F1 score and support.
### Report
To generate report you must provide the following parameters:
* $actualLabels - (array) true sample labels
* $predictedLabels - (array) predicted labels (e.x. from test group)
```
use Phpml\Metric\ClassificationReport;
$actualLabels = ['cat', 'ant', 'bird', 'bird', 'bird'];
$predictedLabels = ['cat', 'cat', 'bird', 'bird', 'ant'];
$report = new ClassificationReport($actualLabels, $predictedLabels);
```
Optionally you can provide the following parameter:
* $average - (int) averaging method for multi-class classification
* `ClassificationReport::MICRO_AVERAGE` = 1
* `ClassificationReport::MACRO_AVERAGE` = 2 (default)
* `ClassificationReport::WEIGHTED_AVERAGE` = 3
2016-07-19 22:17:03 +02:00
### Metrics
After creating the report you can draw its individual metrics:
* precision (`getPrecision()`) - fraction of retrieved instances that are relevant
* recall (`getRecall()`) - fraction of relevant instances that are retrieved
* F1 score (`getF1score()`) - measure of a test's accuracy
* support (`getSupport()`) - count of testes samples
```
$precision = $report->getPrecision();
// $precision = ['cat' => 0.5, 'ant' => 0.0, 'bird' => 1.0];
```
### Example
```
use Phpml\Metric\ClassificationReport;
$actualLabels = ['cat', 'ant', 'bird', 'bird', 'bird'];
$predictedLabels = ['cat', 'cat', 'bird', 'bird', 'ant'];
$report = new ClassificationReport($actualLabels, $predictedLabels);
$report->getPrecision();
// ['cat' => 0.5, 'ant' => 0.0, 'bird' => 1.0]
$report->getRecall();
// ['cat' => 1.0, 'ant' => 0.0, 'bird' => 0.67]
$report->getF1score();
// ['cat' => 0.67, 'ant' => 0.0, 'bird' => 0.80]
$report->getSupport();
// ['cat' => 1, 'ant' => 1, 'bird' => 3]
$report->getAverage();
// ['precision' => 0.5, 'recall' => 0.56, 'f1score' => 0.49]
2016-07-19 22:17:03 +02:00
```