mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2025-01-25 08:08:31 +00:00
62 lines
1.6 KiB
Markdown
62 lines
1.6 KiB
Markdown
|
# Classification Report
|
||
|
|
||
|
Class for calculate main classifier metrics: precision, recall, F1 score and support.
|
||
|
|
||
|
### Report
|
||
|
|
||
|
To generate report you must provide the following parameters:
|
||
|
|
||
|
* $actualLabels - (array) true sample labels
|
||
|
* $predictedLabels - (array) predicted labels (e.x. from test group)
|
||
|
|
||
|
```
|
||
|
use Phpml\Metric\ClassificationReport;
|
||
|
|
||
|
$actualLabels = ['cat', 'ant', 'bird', 'bird', 'bird'];
|
||
|
$predictedLabels = ['cat', 'cat', 'bird', 'bird', 'ant'];
|
||
|
|
||
|
$report = new ClassificationReport($actualLabels, $predictedLabels);
|
||
|
```
|
||
|
|
||
|
### Metrics
|
||
|
|
||
|
After creating the report you can draw its individual metrics:
|
||
|
|
||
|
* precision (`getPrecision()`) - fraction of retrieved instances that are relevant
|
||
|
* recall (`getRecall()`) - fraction of relevant instances that are retrieved
|
||
|
* F1 score (`getF1score()`) - measure of a test's accuracy
|
||
|
* support (`getSupport()`) - count of testes samples
|
||
|
|
||
|
```
|
||
|
$precision = $report->getPrecision();
|
||
|
|
||
|
// $precision = ['cat' => 0.5, 'ant' => 0.0, 'bird' => 1.0];
|
||
|
```
|
||
|
|
||
|
### Example
|
||
|
|
||
|
```
|
||
|
use Phpml\Metric\ClassificationReport;
|
||
|
|
||
|
$actualLabels = ['cat', 'ant', 'bird', 'bird', 'bird'];
|
||
|
$predictedLabels = ['cat', 'cat', 'bird', 'bird', 'ant'];
|
||
|
|
||
|
$report = new ClassificationReport($actualLabels, $predictedLabels);
|
||
|
|
||
|
$report->getPrecision();
|
||
|
// ['cat' => 0.5, 'ant' => 0.0, 'bird' => 1.0]
|
||
|
|
||
|
$report->getRecall();
|
||
|
// ['cat' => 1.0, 'ant' => 0.0, 'bird' => 0.67]
|
||
|
|
||
|
$report->getF1score();
|
||
|
// ['cat' => 0.67, 'ant' => 0.0, 'bird' => 0.80]
|
||
|
|
||
|
$report->getSupport();
|
||
|
// ['cat' => 1, 'ant' => 1, 'bird' => 3]
|
||
|
|
||
|
$report->getAverage();
|
||
|
// ['precision' => 0.75, 'recall' => 0.83, 'f1score' => 0.73]
|
||
|
|
||
|
```
|