mirror of
https://github.com/Llewellynvdm/php-ml.git
synced 2024-12-11 05:12:20 +00:00
51 lines
1.4 KiB
Markdown
51 lines
1.4 KiB
Markdown
|
# Token Count Vectorizer
|
||
|
|
||
|
Transform a collection of text samples to a vector of token counts.
|
||
|
|
||
|
### Constructor Parameters
|
||
|
|
||
|
* $tokenizer (Tokenizer) - tokenizer object (see below)
|
||
|
* $minDF (float) - ignore tokens that have a samples frequency strictly lower than the given threshold. This value is also called cut-off in the literature. (default 0)
|
||
|
|
||
|
```
|
||
|
use Phpml\FeatureExtraction\TokenCountVectorizer;
|
||
|
use Phpml\Tokenization\WhitespaceTokenizer;
|
||
|
|
||
|
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
|
||
|
```
|
||
|
|
||
|
### Transformation
|
||
|
|
||
|
To transform a collection of text samples use `transform` method. Example:
|
||
|
|
||
|
```
|
||
|
$samples = [
|
||
|
'Lorem ipsum dolor sit amet dolor',
|
||
|
'Mauris placerat ipsum dolor',
|
||
|
'Mauris diam eros fringilla diam',
|
||
|
];
|
||
|
|
||
|
$vectorizer = new TokenCountVectorizer(new WhitespaceTokenizer());
|
||
|
$vectorizer->transform($samples)
|
||
|
// return $vector = [
|
||
|
// [0 => 1, 1 => 1, 2 => 2, 3 => 1, 4 => 1],
|
||
|
// [5 => 1, 6 => 1, 1 => 1, 2 => 1],
|
||
|
// [5 => 1, 7 => 2, 8 => 1, 9 => 1],
|
||
|
//];
|
||
|
|
||
|
```
|
||
|
|
||
|
### Vocabulary
|
||
|
|
||
|
You can extract vocabulary using `getVocabulary()` method. Example:
|
||
|
|
||
|
```
|
||
|
$vectorizer->getVocabulary();
|
||
|
// return $vocabulary = ['Lorem', 'ipsum', 'dolor', 'sit', 'amet', 'Mauris', 'placerat', 'diam', 'eros', 'fringilla'];
|
||
|
```
|
||
|
|
||
|
### Tokenizers
|
||
|
|
||
|
* WhitespaceTokenizer - select tokens by whitespace.
|
||
|
* WordTokenizer - select tokens of 2 or more alphanumeric characters (punctuation is completely ignored and always treated as a token separator).
|