2017-02-16 22:23:55 +00:00
|
|
|
<?php
|
|
|
|
|
|
|
|
declare(strict_types=1);
|
|
|
|
|
|
|
|
namespace Phpml\Classification\Linear;
|
|
|
|
|
|
|
|
use Phpml\Helper\Predictable;
|
|
|
|
use Phpml\Helper\Trainable;
|
|
|
|
use Phpml\Classification\Classifier;
|
|
|
|
use Phpml\Classification\Linear\Perceptron;
|
|
|
|
|
|
|
|
class Adaline extends Perceptron
|
|
|
|
{
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Batch training is the default Adaline training algorithm
|
|
|
|
*/
|
|
|
|
const BATCH_TRAINING = 1;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Online training: Stochastic gradient descent learning
|
|
|
|
*/
|
|
|
|
const ONLINE_TRAINING = 2;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* The function whose result will be used to calculate the network error
|
|
|
|
* for each instance
|
|
|
|
*
|
|
|
|
* @var string
|
|
|
|
*/
|
|
|
|
protected static $errorFunction = 'output';
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Training type may be either 'Batch' or 'Online' learning
|
|
|
|
*
|
|
|
|
* @var string
|
|
|
|
*/
|
|
|
|
protected $trainingType;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Initalize an Adaline (ADAptive LInear NEuron) classifier with given learning rate and maximum
|
|
|
|
* number of iterations used while training the classifier <br>
|
|
|
|
*
|
|
|
|
* Learning rate should be a float value between 0.0(exclusive) and 1.0 (inclusive) <br>
|
|
|
|
* Maximum number of iterations can be an integer value greater than 0 <br>
|
|
|
|
* If normalizeInputs is set to true, then every input given to the algorithm will be standardized
|
|
|
|
* by use of standard deviation and mean calculation
|
|
|
|
*
|
|
|
|
* @param int $learningRate
|
|
|
|
* @param int $maxIterations
|
|
|
|
*/
|
|
|
|
public function __construct(float $learningRate = 0.001, int $maxIterations = 1000,
|
|
|
|
bool $normalizeInputs = true, int $trainingType = self::BATCH_TRAINING)
|
|
|
|
{
|
|
|
|
if (! in_array($trainingType, [self::BATCH_TRAINING, self::ONLINE_TRAINING])) {
|
|
|
|
throw new \Exception("Adaline can only be trained with batch and online/stochastic gradient descent algorithm");
|
|
|
|
}
|
|
|
|
|
2017-02-21 09:38:18 +00:00
|
|
|
$this->trainingType = $trainingType;
|
2017-02-16 22:23:55 +00:00
|
|
|
|
2017-02-21 09:38:18 +00:00
|
|
|
parent::__construct($learningRate, $maxIterations, $normalizeInputs);
|
2017-02-16 22:23:55 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Adapts the weights with respect to given samples and targets
|
|
|
|
* by use of gradient descent learning rule
|
|
|
|
*/
|
|
|
|
protected function runTraining()
|
|
|
|
{
|
|
|
|
// If online training is chosen, then the parent runTraining method
|
|
|
|
// will be executed with the 'output' method as the error function
|
|
|
|
if ($this->trainingType == self::ONLINE_TRAINING) {
|
|
|
|
return parent::runTraining();
|
|
|
|
}
|
|
|
|
|
|
|
|
// Batch learning is executed:
|
|
|
|
$currIter = 0;
|
|
|
|
while ($this->maxIterations > $currIter++) {
|
|
|
|
$outputs = array_map([$this, 'output'], $this->samples);
|
|
|
|
$updates = array_map([$this, 'gradient'], $this->targets, $outputs);
|
2017-02-21 09:38:18 +00:00
|
|
|
|
|
|
|
$this->updateWeights($updates);
|
2017-02-16 22:23:55 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Returns the direction of gradient given the desired and actual outputs
|
|
|
|
*
|
|
|
|
* @param int $desired
|
|
|
|
* @param int $output
|
|
|
|
* @return int
|
|
|
|
*/
|
|
|
|
protected function gradient($desired, $output)
|
|
|
|
{
|
|
|
|
return $desired - $output;
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
2017-02-21 09:38:18 +00:00
|
|
|
* Updates the weights of the network given the direction of the
|
|
|
|
* gradient for each sample
|
|
|
|
*
|
|
|
|
* @param array $updates
|
2017-02-16 22:23:55 +00:00
|
|
|
*/
|
2017-02-21 09:38:18 +00:00
|
|
|
protected function updateWeights(array $updates)
|
2017-02-16 22:23:55 +00:00
|
|
|
{
|
2017-02-21 09:38:18 +00:00
|
|
|
// Updates all weights at once
|
|
|
|
for ($i=0; $i <= $this->featureCount; $i++) {
|
|
|
|
if ($i == 0) {
|
|
|
|
$this->weights[0] += $this->learningRate * array_sum($updates);
|
|
|
|
} else {
|
|
|
|
$col = array_column($this->samples, $i - 1);
|
|
|
|
|
|
|
|
$error = 0;
|
|
|
|
foreach ($col as $index => $val) {
|
|
|
|
$error += $val * $updates[$index];
|
|
|
|
}
|
2017-02-16 22:23:55 +00:00
|
|
|
|
2017-02-21 09:38:18 +00:00
|
|
|
$this->weights[$i] += $this->learningRate * $error;
|
|
|
|
}
|
|
|
|
}
|
2017-02-16 22:23:55 +00:00
|
|
|
}
|
|
|
|
}
|